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Abstract

We analyze an entry game with multiple periods. In each period pri-
vately informed agents who have not yet joined decide whether to sub-
scribe to a network. Subscribers derive benefits in future periods de-
pending on the network size. We study the case where agents are suf-
ficiently patient and show that there exists a unique symmetric equi-
librium if the number of existing subscribers is common knowledge in
each period. This resolves the coordination problem which is prevalent
in markets with network externalities. (JEL Classification Codes: D82,
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1. Introduction

Adoption/network externalities arise when complementarities exist across agents in

the consumption of certain goods or services. Examples include commodities designed

for joint consumption or sharing (telephony and data networks), those with indirect scale

economies for complementary goods (hardware-software and durable-good servicing), and

adoption of innovations and standards where compatibility is valuable.

Due to complementarity, there typically exist multiple, Pareto ranked equilibria in

such markets. The worst is a null equilibrium in which no one adopts because no one is ever

anticipated to adopt, while at the other end is a “maximum” equilibrium. The maximum

equilibrium refers to a “maximal set of agents” who would indeed adopt when that is

what everyone expects to occur. There may be other equilibria intermediate between

these two. With no outside force present, the particular equilibrium to be realized is

indeterminate. This is a well-known coordination problem. One strand of research has

studied inducement schemes as a device to overcome the likelihood of coordination failure

in the static, simultaneous move entry game. These schemes provide insurance against low

adoption or entry rates. Such insurance warrants a sufficient rate of adoption by those

who have a low cost of entry, which, in turn, will induce others with higher entry costs

to also enter. Dybvig and Spatt (1983) and Park (2003) devise insurance schemes that

will induce certain target equilibria as the unique (symmetric) equilibrium at the minimal

expected cost of insurance subsidy. Bagnoli and Lipman (1989) study a refund mechanism

to induce private contribution to a public project where a sufficient number of people must

contribute before the project produces any benefit.

If agents’ types are randomly determined and privately known, but there is common

knowledge both that the types are correlated and of the nature of the correlation, then

the theory of global games developed by Carlsson and van Damme (1993) would apply.

Morris and Shin (2003) show that even when there is only a small amount of heterogeneity

in types in such games there will often be a unique equilibrium. The common knowledge

of the way in which beliefs are correlated allows individuals through a process of backward

induction to condition their beliefs as to how others will act on the knowledge of their own

individual types.

In this paper we analyze the effect of a dynamic adoption process on resolving the

coordination problem in the market entry game when agent types are privately and inde-

pendently drawn from a commonly known distribution. The independent nature of types
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renders the logic of global games inapplicable. A dynamic adoption process, however,

introduces a strategic consideration that is absent in the static game. Individuals who

chose to enter early may influence the entry decisions of others who have not yet entered.

This creates the possibility that early entrants may launch a domino chain reaction of

widespread adoption. However, agents considering early entry will be so motivated only if

they expect such a domino chain. Such a domino chain itself relies on a nested sequence

of optimistic beliefs of future adopters. At first sight, therefore, it appears that the basic

intuition of coordination failure due to multiplicity of self-confirming expectation would

continue to prevail in dynamic adoption process. Rather surprisingly, we establish that

this is not the case. Specifically, we show that there exists a unique symmetric, perfect

Bayesian equilibrium if agents decide when as well as whether to adopt and they are

sufficiently patient. In this equilibrium entry occurs with positive probability.

In our model, agent’s types are ordered by the utility level the agent derives from

being a member of the network. Since each member’s utility increases as the network gets

larger, the higher is the utility an agent derives from the network the lower is the threshold

network size for this agent to join profitably. Hence, we describe an agent who derives a

higher utility level from the network as having a lower type. In equilibrium, all agents

choose a cutoff strategy in which an agent enters in any period k precisely when his type is

no higher than a cutoff level for that period. In this equilibrium some entry always occurs

with a positive probability. Intuitively, higher types who would need large numbers of other

agents also to be in the network in order to find their own entry profitable, will enter later

than lower types who would need smaller numbers of other agents in the network to find

it profitable. Therefore, an agent of a particular type who has not yet entered can use the

common knowledge of the state of the game in period k to determine the expected number

of additional entrants conditional on his own entry in period k and the number of prior

entrants. The ability to form these expectations of future entrants generates a backward

induction process that uniquely pins down the equilibrium adoption process from the point

where all but one agent have entered already all the way back to the point at which no

one has entered.

When agents do not discount, equilibrium cutoff level in each period is determined

entirely by the number of agents who have entered by then. However, when agents do

discount, the equilibrium cutoff levels depend on further details of history such as how

many entered in which period. Nevertheless, the basic logic of our argument applies

and we show that when agents are sufficiently patient, there exists a unique, symmetric
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equilibrium. This equilibrium converges to the no-discount equilibrium as the discount

factor tends to one.

Since the agents are ex ante identical we find it natural that they follow symmet-

ric strategies in equilibrium. Hence, we primarily focus on symmetric equilibrium in this

paper. Asymmetric equilibria, however, may exist in some environments. Nevertheless,

such asymmetric equilibria converge to the unique symmetric equilibrium as the number

of agents increases without bound, because “the expected behavior of all other agents” to

which each agent best-responds differs only by the behavior of one agent from the perspec-

tives of any two agents. Therefore, their respective expectations become arbitrarily close to

one another as the number of agents increases. In this sense, the existence of asymmetric

equilibria does not undermine our main message that dynamic adoption process resolves

the coordination failure.

The coordination problem arising from strategic complementarities has been studied

in some other dynamic settings. Rohlfs (1974) considers introductory pricing in his classic

paper on telecommunication markets. As mentioned earlier Bagnoli and Lipman (1989)

study a refund mechanism in a dynamic setting. Andreoni (1998) examines large “leader-

ship gifts” in charitable fund-raising.1 These papers analyze environments with (almost)

complete information, i.e., either the agents’ preferences or their distribution are/is known.

Dixit (2003) also obtains unique equilibrium in a dynamic game similar to ours, but his

model is one of complete information. Our paper differs from these studies in that we

examine an incomplete information environment. Farrell and Saloner (1985) deal with

incomplete information and contain an analysis close to ours when there are two agents.

Our analysis generalizes theirs to any finite number of agents and to the cases that they

derive utility each period so that the dynamics, as well as the final network formed, are of

1 Organizers of charitable fund drives typically announce at various stages of the drive how much
money has been pledged, and possibly the number of individuals who have made donations. According
to the logic of our analysis, the fact that these announcement will be made should have an effect on how
much will be given in the early stages of a campaign because those who go early have reason to believe
that their gifts may encourage others to give at later stages. This is because those who choose not to give
early, upon seeing how much has been given, will have a greater degree of confidence that the benefits that
they will derive from the completion of the campaign will more than cover the cost to them of their own
donation. Of course, fundraisers often select a group of ‘leaders’ whom they solicit first, prior to announcing
a general campaign. This phenomenon may be more closely related to costly transmission of information
regarding the ‘quality’ of the charitable endeavor and informational cascades, a logic quite separate from
that underlying our own model. Vesterlund (2003) and Andreoni (2004) discuss how leadership grants
may transmit information and how the possibility of this transmittal may affect both the amount raised in
the ‘leadership’ or ‘quiet’ phase of a fundraising drive and the total amount raised. Marx and Matthews
(2000) argue that dynamic contribution tends to enhance efficiency when the cumulative total contribution
is publicly known, in a setting of voluntary contribution to a public project.
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importance.

The remainder of the paper has the following structure. The next section describes

the model. Section 3 presents the main analysis that characterizes the unique symmetric

equilibrium. Section 4 contains some concluding remarks.

2. Model

There are N +1 ex ante identical agents, indexed by i ∈ I = {1, · · · , N +1}, who are

privately informed of their own types t ≥ 0 which are independent draws from a common

distribution function F : <+ → [0, 1]. Let f : <+ → <+ denote the corresponding density

function. We assume that F is continuous and F (0) = 0 (i.e., t is atomless) and f is

bounded. For expositional convenience only, we assume F (t)<1 and f(t)>0 for all t ≥ 0.

There are infinite periods indexed by k = 1, · · ·. At the beginning of each period k the

number nk−1 of agents who adopted/subscribed up until period k−1 is common knowledge;

Based on the public history hk :=(n1, · · · , nk−1) the agents who have not adopted already

simultaneously choose either to adopt the network product or not. Once adopted, agents

cannot reverse their choices in future periods.

An agent who adopts in period k′ derives a stage utility from the network product in

every period k ≥ k′, determined by his type t and the network size in period k measured

by the number νk := nk − 1 of other adopters (i.e., not counting himself): A t-type agent

derives a utility of ut(νk) ∈ < in period k.2 The stage utility to a non-adopter is normalized

to uφ = 0. Each agent’s objective is to maximize the expected δ-discounted average of

utility stream with a discount factor δ ≤ 1: That is, each agent maximizes the expected

value of

(1− δ)
∞
∑

k=1

δk−1uk (1)

if δ < 1, where uk is the utility in period k, which is 0 if the agent has not adopted yet

and is ut(νk) if the agent of type t has adopted; and maximizes the limit of the expected

value of (1) as δ → 1 if the discount factor is δ = 1.

An agent’s type, t, measures how reluctant he is to join the network, so a higher

type means a more conservative agent who needs a larger network to benefit by joining.

2 After development of this paper, we became aware of Xue (2003). Xue studies a dynamic version
of the stag hunt game. His model has special features that are not present in our own model, namely, the
benefit from network does not realize unless everybody adopts and the type enters in the utility function
linearly. His result and analysis for no discounting case are similar to ours, however there are some steps
(e.g., Lemmas 3 and 4) that we found necessary to prove our result but are not used in his proof. This
may reflect nontrivial differences between the two models.
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Hence, we assume that ut(ν) is strictly increasing in ν = 0, · · · , N , strictly decreasing and

continuous in t, and that

u0(0) = 0 and ∃ t̄ s.t. ut̄(N) = 0. (2)

The first equality says that the “best” type is indifferent between being a sole member of

the network and being a non-member.3 Clearly, t̄ > 0 defined above is unique because

ut(N) strictly decreases in t and u0(N) > u0(0) = 0. We denote this game by Γ.

An agent i’s period-k strategy when he has not adopted yet, given a history hk =

(n1, · · · , nk−1), is an integrable function that maps types to adoption probabilities, i.e.,

ai(·|hk) : <+ → [0, 1]

where ai(t|hk) is the probability that the agent i adopts (the network product) when his

type is t, if he has not adopted up to the previous period. A function ai(·|hk) is a cutoff

strategy at (a cutoff level) t̂ ≥ 0, if ai(t|hk) = 1 for all t < t̂ and ai(t|hk) = 0 for all t > t̂.

An agent i’s strategy is a collection {ai(·|hk)} for all possible hk, which we denote by ai

as shorthand. A strategy ai is a cutoff strategy if ai(·|hk) is a cutoff strategy for every

possible hk.

A strategy profile (ai)i∈I is a (perfect Bayesian) equilibrium of Γ if each agent i’s

period-k strategy after each possible hk is a best response to (aj)j 6=i conditional on hk.

3. Unique Symmetric Equilibrium

In this section we focus our attention on symmetric equilibrium and show that there

exists a unique symmetric equilibrium of Γ when δ is sufficiently large. First, we construct

it for δ = 1 and show that it is a cutoff equilibrium and the cutoff level in each period

depends only on the total number of agents who already adopted. Then, we show (details

in the Appendix) that there exists a threshold δ∗ < 1 such that the same argument can be

extended to all δ > δ∗ to establish that there is a unique symmetric equilibrium and it is

a cutoff equilibrium, however, the cutoff level in each period depends on the full adoption

history up to then.

From now until Theorem 1, we analyze the case that δ = 1. Since there are finite

agents the adoption process stops within finite periods, so that any utility stream {uk} that

an agent might expect has a constant utility level after a finite number of periods. Hence,

the limit of (1) as δ → 1 for any utility stream is this constant utility level. Consequently,

3 All the main results of this paper hold when u0(0) is negative and sufficiently small and u0(1) > 0.
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the agent’s objective amounts to maximizing the “terminal” stage utility level that will

prevail after the adoption process has stopped.

The observation that agents only care about the final network size of any adoption

process simplifies the analysis for the case δ = 1 because the details of the adoption process

leading to the final network can be ignored. However, it allows an inessential indifference of

an agent between adopting now and adopting later so long as the final network will be the

same. For example, if all but one agent already adopted the remaining agent is indifferent

between adopting now and adopting in any later period. To circumvent this problem in

this paper we adopt a stopping rule that if no one adopted the network in some period

k, then no further adoption is allowed and only those agents who adopted by then benefit

from the network in future periods.4 Below we characterize the symmetric equilibrium for

the case δ = 1. Note that ai = aj in symmetric equilibrium.

Lemma 1: If δ = 1, in any symmetric equilibrium every agent adopts with a positive

probability in period 1.

Proof: Consider a symmetric strategy profile (ai)i∈I such that
∫

ai(·|h1)dF = 0. Let

t1 be the unique type such that ut1(1) = 0. Consider an ε-type agent in period 1 where

ε < t1 so that uε(1) > 0. If this agent deviates by adopting in period 1, then in the next

period other agents would adopt with a positive probability, say p > 0, because adopting is

beneficial when their types are lower than t1. The expected utility from such a deviation,

therefore, exceeds puε(1) + (1− p)uε(0) which tends to pu0(1) > 0 as ε → 0, so that such

deviation is beneficial for sufficiently small ε. Hence, the considered strategy profile cannot

be an equilibrium. Q.E.D.

By Lemma 1 in every symmetric equilibrium there is a positive probability that

the game reaches a period with any number of existing adopters, i.e., with a history

hk = (n1, · · · , nk−1) for any nk−1 = 0, · · · , N . As will become clear in the analysis, what

matters in the strategic decisions in the remaining part of the game is the total number

nk−1 of adopters by then (equivalently, the number of agents who have not adopted),

not how it evolved. So, we define the state (variable) s for a period k with a history

4 The effect of this stopping rule is to shorten the completion time of the network to be formed by
speeding up the adoption process. This is entirely immaterial when δ = 1. For δ < 1, an equilibrium under
this stopping rule remains an equilibrium under a more general, χ-stopping rule for any natural number χ:
the process stops if no one adopted for χ consecutive periods. There may exist additional equilibria under
χ-stopping rule if χ > 1, but the final network to emerge in these equilibria converge, as δ → 1, to that in
the unique equilibrium under the 1-stopping rule. (A proof is available from authors.) In this sense, the
main results of this paper are robust to the stopping rule we adopt.
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hk = (n1, · · · , nk−1) as s = N + 1 − nk−1, i.e., the number of non-adopters after hk, who

we refer to as the “remaining” agents. With a slight abuse of notation, we write ai(·|s) if

a strategy ai has the property that ai(·|hk) = ai(·|h′k′) whenever both hk and h′k′ have the

same state s. We now proceed with an induction argument that characterizes symmetric

equilibrium (ai)i∈I when δ = 1.

STEP 1: As shown above, the game reaches any possible state s = 0, · · · , N + 1, with a

strictly positive probability. The game ends if it reaches s = 0. Suppose that the game

reached a state s = 1, i.e., only one agent remains in some period k. It is trivial that this

last agent will adopt precisely when his type does not exceed t̄ defined in (2). That is, the

equilibrium strategy of the remaining agent when he is the only remaining agent (i.e., in

state s = 1) is a cutoff strategy at τ1 ≡ t̄ :

ai(t|1) =
{

1 if t < τ1

0 if t > τ1
(3)

STEP 2: Suppose that the game reached a state s = 2 in period k with a history hk.

Consider one remaining agent, say i, of type ti ≤ τ1. If the other remaining agent, say

j, were to adopt in this period, agent i would get a utility of uti(N) by adopting in this

period; if agent i waited in this period he would adopt in the next period (because ti ≤ τ1),

hence again get a utility of uti(N) eventually. Therefore, agent i’s optimal decision in this

period depends on what would happen in the contingency that agent j were to not adopt

in this period. In this contingency, agent i would get a utility uφ = 0 by not adopting

in this period because no further adoption would ensue due to the postulated stopping

rule; if agent i adopted in this period, he would get uti(N) eventually in case agent j

joins next period and uti(N − 1) otherwise. Since agent j’s response in the next period is

independent of ti, the expected utility of agent i from adopting decreases in ti, whereas

that from waiting is 0. Consequently, agent i (and j by symmetry) should employ a cutoff

strategy at a level, say t̂. Note that agent i strictly prefers waiting in this period if his

type is sufficiently close to τ1, hence t̂ < τ1.

Let g(·|hk) denote the posterior density function updated from f by hk on the type of

the remaining agent. Then, the condition that characterizes t̂ is the following: agent i of

t̂-type is indifferent between adopting and waiting in this period given that agent j follows

a cutoff strategy at t̂ in this period and a cutoff strategy at τ1 in state s = 1, i.e.,

ut̂(N)
∫ τ1

t̂
g(t|hk)dt + ut̂(N − 1)

∫ ∞

τ1

g(t|hk)dt = 0. (4)
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The left hand side, LHS, of (4) is the expected utility of a t̂-type agent when he adopts in

the current period conditional on the other remaining agent waits, while the RHS is that

when he waits in the current period. Note that the LHS of (4) is strictly decreasing in t̂,

clearly from a positive value when t̂ = 0 to a negative value when t̂ = τ1. Hence, there

exists a unique value of t̂ that solves (4), which is the equilibrium cutoff level in the period

following the history hk, denoted by τ2(hk). Summarizing,

Lemma 2: If δ = 1, the equilibrium strategy in state s = 2 with a history hk is a

cutoff strategy at τ2(hk), the unique level of t̂ that solves (4).

STEP 3: Fix a state s̃ and any possible history h̃ whose state is s̃. (A history h′k′ is an

extension of a history hk if k′ ≥ k and the first k components of h′k′ coincide with hk.)

Consider the following property in an equilibrium:

[A] The strategy after any extension h of h̃ whose state is s < s̃, is a cutoff strategy at a

level that only depends on the state, denoted by τs(h̃), and decreases in s (conditional

of h̃).

Note that this property holds along an equilibrium when s̃ = 3 by Lemma 2, and trivially

if s̃ < 3. (For s̃ = 3, note that, given the equilibrium strategy after h̃, the posterior

g(·|h′) is uniquely determined for h′ that extends h̃ and has a state 2.) We now make an

induction hypothesis that the property [A] holds for all s̃ ≤ r where r = 3, · · · , N , along

an equilibrium. Below we establish that under this hypothesis the property [A] holds for

s̃ = r +1 as well. In short, we try to show that any extension of h̃ entails a cutoff strategy

that only depends on the state, with the cutoff level strictly decreasing in the state.

Lemma 3: Suppose δ = 1. Pick an arbitrary remaining agent i after the game reached

a state s̃ in period k with a history h̃, such that [A] holds. Consider the contingency that

m > 0 of the other s̃ − 1 remaining agents were to adopt in period k according to the

equilibrium strategy ai(·|h̃). Then, the final network size that would realize when the

agent i adopts in this period is the same as that that would realize when he adopts in the

next period.

Proof: Consider the case that the agent i adopted in period k, so that the state in

period k + 1 is s1 = s̃ − m − 1 < s̃, hence all remaining agents of types lower than the

equilibrium cutoff level τs1 would adopt in period k + 1 by [A]. (We use τs as shorthand

for τs(h̃) for s < s̃ in this proof.) Let s2 be the state of period k +2 that arises as a result.

If s2 = s1 then no further adoption comes forth by [A], in which case s2 is called the
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terminal state; otherwise, i.e., if s2 < s1 then all remaining agents of types lower than the

equilibrium cutoff level τs2 would adopt in period k + 2, resulting in a state s3 of period

k + 3. If s3 = s2 then s3 is the terminal state; otherwise, the state keeps being updated

analogously for subsequent periods. The updating should stop because there are finite

states. Denoting the terminal state by sx, we have a sequence of states s1 > s2 > · · · > sx

and associated cutoff levels τs1 < τs2 < · · · < τsx for periods k + 1, · · · , k + x, respectively.

Note sx−1 = sx by construction.

Consider the alternative case that the agent i did not adopt in period k, so that the

state in period k + 1 is s′1 = r − m = s1 + 1, hence all remaining agents of types lower

than the equilibrium cutoff level τs′1 would adopt in period k + 1. Let s′2 be the state of

period k + 2 that arises as a result. If s′2 = s′1 then no further adoption comes forth by

[A], hence s′2 is the terminal state; otherwise, i.e., if s′2 < s′1 then all remaining agents of

types lower than the equilibrium cutoff level τs′2 would adopt in period k + 2, resulting in

a state s′3 of period k + 3. If s′3 = s′2 then s′3 is the terminal state; otherwise, the state

keeps being updated analogously. Denoting the terminal state by s′y, we have a sequence

of states s′1 > s′2 > · · · > s′y and associated cutoff levels τs′1 < τs′2 < · · · < τs′y for periods

k + 1, · · · , k + y, respectively. Again, s′y−1 = s′y by construction.

The claim of the Lemma is proved if sx = s′y. In fact, it is easy to see that

[B] sx = s′y ensues if sj = s′` for some 1 ≤ j ≤ x and 1 ≤ ` ≤ y, because then sj+1 = s′`+1

and the subsequent updating of the state is the same between the two sequences.

Note s′1 > s′2 because the agent i adopts in period k + 1. Since s1 = s′1 − 1 by

construction as noted earlier, s1 ≥ s′2. If s1 = s′2 then the claim is proved by [B].

Suppose otherwise, i.e., s1 > s′2. By construction, s′2 = s′1−1−#(0, τs′1 ] = s1−#(0, τs′1 ]

where #(0, τ ] is the number of agents other than i who remain after period k +1 and have

types in (0, τ ]. Similarly, s2 = s1 − #(0, τs1 ] by construction. Since s′1 > s1 implies

τs′1 < τs1 , it follows that #(0, τs′1 ] ≤ #(0, τs1 ], hence s′2 ≥ s2.

The claim follows by [B] if s′2 = s2, hence suppose s′2 > s2 in the sequel. By construc-

tion, s′3 = s′1 − 1−#(0, τs′2 ] = s1 −#(0, τs′2 ]. Since s1 > s′2 it follows that s2 ≥ s′3. Since

the claim follows if s2 = s′3, suppose s2 > s′3 in the sequel.

Proceeding analogously, we deduce that sx = s′y unless s′j > sj > s′j+1 > sj+1 for all

j = 1, 2, · · ·. However, these inequalities contradict sx−1 = sx, an equality that must hold

by construction, hence we conclude that sx = s′y, i.e., the final network sizes are the same.

Q.E.D.
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Lemma 4: Suppose δ = 1 and that along the equilibrium path a state s̃ is reached

in period k with a history h̃ such that [A] holds. The equilibrium strategy in period k is a

cutoff strategy whose cutoff level is uniquely determined by h̃ and is lower than the cutoff

level for the state s̃− 1.

Proof: Let g(·|h̃) and G(·|h̃) denote the posterior density and cdf functions, respec-

tively, updated by h̃ on the type of each remaining agent. In light of [A], let τs(h̃) denote

the equilibrium cutoff level after the history h̃s = (h̃, s) for s < s̃.

Consider an arbitrary remaining agent i in period k. Suppose his type is ti ≤ τs̃−1(h̃).

If he waited while m > 0 other agents adopted in this period, by adopting in the next period

he can induce the same final network size as when he adopted in this period, according

to Lemma 3—In fact, he will indeed adopt in the next period because ti ≤ τs̃−1(h̃) <

τs̃−m(h̃). Hence, adopting and waiting is equivalent in this contingency and, therefore, the

optimal decision of remaining agent in this period is determined by what would happen

in the contingency that no agent other than i would adopt in this period. In this latter

contingency, if the agent i adopted, then his expected utility is

s̃
∑

j=1

uti(N − s̃ + j)Prob(j|h̃)

where Prob(j|h̃) is the probability conditional on h̃ that no other agent adopts in period k

and j more other agents adopt eventually. If the agent i did not adopt, the adoption process

would end and he would get uφ = 0. Again, since other remaining agents’ behavior does

not depend on ti, the sum above strictly decreases in ti. Hence, the equilibrium strategy

in this period is a cutoff strategy at, say t̂. The equilibrium level of t̂ is characterized by

s̃
∑

j=1

ut̂(N − s̃ + j)Prob(j|h̃) = 0 (5)

where Prob(j|h̃) is calculated using the fact that the posterior density on the type of

remaining agent after this period is g(·|h̃)|t≥t̂, the truncated density of g(·|h̃) above t̂. As t̂

increases, g(·|h̃)|t≥t̂ deteriorates in the sense of first-order stochastic dominance, hence so

does the distribution of total number of future adopters. Together with the fact that utility

decreases in type, we deduce that the LHS of (5) is strictly decreasing in t̂, hence there is

a unique value of t̂ that solves (5), denoted by τs̃(h̃). Clearly, τs̃(h̃) > 0 because the LHS

of (5) is positive when t̂ = 0. Consider a τs̃−1(h̃)-type agent: his expected utility would
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be 0 if he already adopted and s̃ − 2 agents remain whose type is distributed according

to g(·|h̃) truncated at τs̃−1(h̃). So, his expected utility would be negative if s̃ − 1 agents

remain with the same type distribution. This means that the LHS of (5) is negative at

t̂ = τs̃−1(h̃) and, therefore, 0 < τs̃(h̃) < τs̃−1(h̃). Q.E.D.

Recall the induction hypothesis that the property [A] holds for all s̃ ≤ r where r =

3, · · · , N , along an equilibrium. We now establish that the property [A] holds for s̃ = r +1

as well. Suppose a state s̃ = r + 1 is reached in some period k after a history h̃. By

induction hypothesis and Lemma 4, the equilibrium strategy after h̃r = (h̃, r) is a cutoff

strategy at a level τr(h̃r) and τr(h̃r) < τr−1(h̃r) < · · · < τ1(h̃r) = t̄.

We now show that the history (h̃r, s) and any other extension h̃s of h̃ with state s

entail the same cutoff strategy for s < r. By induction hypothesis we only need to show

this for h̃s that is not an extension of h̃r, which we assume below. Let g(·|h̃), g(·|h̃s) and

g(·|h̃r, s) be the posterior densities after h̃, h̃s and (h̃r, s), respectively. If s = 1, the cutoff

levels are clearly τs(h̃s) = τs(h̃r) = t̄. Now suppose τs(h̃s) = τs(h̃r) for all s = 1, · · · , z− 1,

and consider s = z(< r). For the cutoff level τz = τz(h̃r), the expected utility of a τz-agent

when he finds himself to be the sole adopter in the current period, say kz, is 0:

z
∑

j=0

uτz (N − z + j)Prob(j|h̃r, z − 1) = 0 (6)

where Prob(j|h̃r, z − 1) is the probability that j more agents adopt eventually when z − 1

agents who remain after period kz follow cutoff levels τs(h̃r), s = 1, · · · , z − 1, in future

periods. The posterior density of the z − 1 remaining agents is g(·|h̃r)|t>τz because cutoff

strategies would have been followed in period k + 1 and later.

Next, consider τ ′z = τz(h̃z). Similarly as above, the expected utility of a τ ′z-agent

when he finds himself to be the sole adopter in the current period, say k′z, is 0:

z
∑

j=0

uτ ′z (N − z + j)Prob(j|h̃, z − 1) = 0 (7)

where Prob(j|h̃, z − 1) is the probability that j more agents adopt eventually when z − 1

agents who remain after period k′z follow cutoff levels τs(h̃z), s = 1, · · · , z − 1, in future

periods. Note τs(h̃z) = τs(h̃r) for s = 1, · · · , z − 1 by supposition and that the pos-

terior density of the z − 1 remaining agents in this case is g(·|h̃s)|t>τ ′z because, again,

cutoff strategies would have been followed in period k + 1 and later. Assume τz ≥ τ ′z so
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that g(·|h̃s)|t>τ ′z = c · g(·|h̃s)|t>τz for some constant c > 0 for all t > τz and, therefore,

Prob(j|h̃, z−1) = cz−1 ·Prob(j|h̃r, z−1) for all t > τz. From (6), therefore, it follows that

(7) holds precisely when τ ′z = τz. A symmetric argument works when τz < τ ′z. Hence, we

have proved that τs(h̃s) = τs(h̃r) for all s < r, as desired. This completes the induction

argument that [A] holds for s̃ = r + 1 as well.

Finally, applying Lemma 4 to histories with state s̃ = r+1, we prove that the equilib-

rium strategy in state r + 1 and onwards is a cutoff strategy that is uniquely determined

by the posterior on the remaining agents’ type shaped by the history up to then. Applying

the same logic inductively all the way back to the the state N + 1, i.e., to the null history,

we find a unique symmetric equilibrium. We state this as:

Theorem 1: If δ = 1, there exists a unique symmetric equilibrium of Γ. In this

equilibrium, the remaining agents’ strategy after any history is a cutoff strategy at a level

that depends only on the state s (i.e., the number of remaining agents), denoted by τs,

and 0 < τN+1 < τN < · · · < τ1 = t̄.

Part of the analysis up to now relies on the fact δ = 1, hence is not readily applicable

to the case δ < 1. If δ < 1, an agent would prefer adopting earlier rather than later if

adopting later delays the adoption process although it leads to the same network eventually.

In evaluating the benefit of adopting now as opposed to waiting, therefore, the time paths

following adoption by some other agents come into the equation even if the final network

will be the same regardless of whether the agent in question adopts now or in the next

period, because the differences along the two paths now matters. Due to such additional

considerations the future cutoff levels depends not only on how many agents have adopted

by then but also on when they (including the agent in question) adopted. This implies

that the final network can be different depending on when the agent in question adopts.

So, the Lemma 3 does not hold. Nevertheless, the effects of these complications become

negligible as δ approaches 1 because then the discrepancy in argument from the case δ = 1

either happens with negligible probability or has a negligible effect because it applies

only to a finite number of periods before the terminal network is reached. Therefore, the

basic intuition of Theorem 1 extends to large values of δ: We establish that there is a

unique symmetric equilibrium, and that it is a cutoff equilibrium and converges to the one

described in Theorem 1 as δ tends to 1. This result is formally stated in the next theorem

and is proved in the Appendix. Note that it is no longer the case that the equilibrium

cutoff level depends only on the number of total adopters by then, but it depends on the
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full adoption history up to then.

Theorem 2: Suppose i) u̇t(ν), the derivative of ut(ν) with respect to t, exists for all

t ∈ (0, t̄) and ν = 0, · · · , N , and ii) there is θ > 0 such that |u̇t(ν)| > θ for all t ∈ (0, t̄)

and ν = 0, · · · , N . Then, there is δ∗ < 1 such that if δ > δ∗ there is a unique symmetric

equilibrium of Γ. Furthermore, this equilibrium is a cutoff equilibrium and converges to

the equilibrium described in Theorem 1 as δ → 1.

Up to now we have focused on symmetric equilibrium and characterized it fully. We

note, however, that equilibria in asymmetric cutoff strategies may also exist in some envi-

ronments. This is because, given a history up to a certain period, individual agents may

have different beliefs regarding the distributions of types of all other remaining agents.

Such differences in beliefs may support differences in the anticipated number of other peo-

ple who will enter in the future and, therefore, may result in asymmetric equilibrium cutoff

levels.5 Note, however, that the differences in beliefs of any pair of agents can only exist

with respect to beliefs about each other’s types since their respective sets of “all other

agents” differ only with respect to each other, and this difference becomes insignificant

when the number of agents, N , is large.6 As N grows without bound, therefore, the

differences in expectations of any two agents become ever smaller and consequently, all

asymmetric equilibria converge to the unique symmetric equilibrium. This is stated below.

Theorem 3: Suppose i) t̄N → t̄∞ < ∞ as N → ∞, where t̄N is the unique t such

that ut(N) = 0, ii) u̇t(ν) exists and |u̇t(ν)| > θ for some θ > 0, for all t ∈ (0, t̄∞) and all

ν = 0, · · ·. For δ larger than δ∗ described in Theorem 2, asymmetric equilibria of Γ may

exist, however they converge, if exist, to the unique symmetric equilibrium as the number

of agents tends to infinity.

Proof: See Appendix.

5 We provide a two-agent example. Let ut(ν) = ν − t be the utility functions for ν = 0, 1, and
consider a cdf function F such that F (0.2) = 1/6, F (0.4) = 3/8 and F (1) = 1/2. Clearly, t̄ = 1 is
the cutoff level when only one agent remains. Let t1 and t2 be the cutoff levels of agents 1 and 2,
respectively, when δ = 1 and neither of them adopted, i.e., in state s = 2. The condition for the agent
1 of t1 type to be indifferent between adopting and not, is F (1)ut1 (1) + (1 − F (1))ut1 (0) = F (t2)ut1 (1),
or equivalently, ( 1

2 − F (t2))(1 − t1) = (1 − 1
2 )t1. An analogous condition for agent 2 of t2 type is

( 1
2 −F (t1))(1− t2) = (1− 1

2 )t2. One can easily verify from F (0.2) = 1/6 and F (0.4) = 3/8 that these two
conditions are satisfied when t1 = 0.2 and t2 = 0.4 and when t1 = 0.4 and t2 = 0.2, hence asymmetric
cutoff equilibria exist.

6 This is so even if the adoption process went a long way and only a small number of agents remain,
because “all other remaining agents” can be any subset of the initial set of agents with the right cardinality.
Here, we implicitly assume anonymity in the sense that each agent cannot tell other agents apart except
by their past adoption decisions.
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4. Concluding Remarks

New products and services that have network externalities are often adopted by at

least some of the potential users of such products and services. A satisfactory model of the

adoption process should be able to account for the size of the group that chooses to enter

a network. A static model of network formation cannot do this because the existence of

complementarities implies that there are a multiplicity of equilibria. However, it is natural

to think of the formation of a network as a dynamic process in which each agent can

observe at each moment in time how many people have already entered the network and

can use this information to update his/her beliefs with respect to the expected number of

additional agents who will eventually join the network. Modelling the entry process as a

dynamic game of incomplete information is not only more realistic, but, as our analysis of

a simple dynamic market entry game shows, may yield a unique equilibrium. Unlike the

static network entry game, if individuals can choose when to enter then the decision of one

agent can influence the decisions of others. Therefore, the existence of complementarities

in the payoff function of agents cannot, in general, support an equilibrium in which no one

enters because every agent believes that no one else will enter. Our model also has the

testable implication that the expected number of entrants is related to the properties of

the distribution of types in the population in a quite natural way. In particular, the model

implies that the more enthusiastic is the population about adopting the network (in the

sense of first-order stochastic dominance), the greater is the expected number of people

who will enter in equilibrium.

14



Appendix

Proof of Theorem 2: It is straightforward (hence, omitted) to extend the logic of

Lemma 1 to δ sufficiently close to 1 and verify that there is a threshold δ < 1 such that in

any symmetric equilibrium of Γ with δ > δ, every agent adopts with a positive probability

in period 1. Throughout this Appendix we consider δ ∈ (δ, 1). We now characterize

symmetric equilibrium (ai)i∈I by an induction argument.

STEP A1: As argued above, the game reaches any possible state s = 0, · · · , N + 1, with a

strictly positive probability. It is trivial that if the game reached a state s = 1, i.e., only

one agent remains in some period k, then this last agent will adopt precisely when his type

does not exceed t̄ defined in (2). That is, the equilibrium strategy of the remaining agent

when he is the only remaining agent (i.e., in state s = 1) is a cutoff strategy at τ1 ≡ t̄.

STEP A2: Suppose that the game reached a state s = 2 in period k with a history hk.

Consider one remaining agent, say i, of type ti ≤ τ1. If the other remaining agent, say j,

were to adopt in this period (which happens with probability p1, say), agent i would get a

stage utility of uti(N) forever by adopting in this period; if agent i waited in this period

he would adopt in the next period (because ti ≤ τ1), hence again get a stage utility of

uti(N) forever but from next period onwards.

Next consider the contingency that agent j were to not adopt in this period, which

happens with probability p0 (= 1 − p1). In this contingency, agent i would get a utility

uφ = 0 by not adopting in this period; if agent i adopted in this period, he would get

uti(N − 1) this period, and from next period on he would get uti(N) in case agent j joins

next period (which happens with probability q, say, conditional on j does not join this

period) and uti(N − 1) otherwise. Note that the agent j’s response in the next period is

independent of ti.

Combining the two contingencies, the benefit of adopting this period as opposed to

waiting is

p1(1− δ)uti(N) + p0[uti(N − 1) + qδ(uti(N)− uti(N − 1))]

which is strictly decreasing in ti regardless of p1 and q, with a negative value at ti = τ1.

Therefore, agent i (and j by symmetry) should employ a cutoff strategy at a level, say

t̂ < τ1.

Let g(·) denote the posterior density function updated from f by hk on the type of

the remaining agent. Since p1 =
∫ t̂
0 g(t)dt and q =

∫ τ1

t̂ g(t)dt/
∫∞

t̂ g(t)dt, the cutoff level t̂
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satisfies

(1− δ)ut̂(N)
∫ t̂

0
g(t)dt

+
(

1−
∫ t̂

0
g(t)dt

)

[

ut̂(N − 1) +
δ
∫ τ1

t̂ g(t)dt
∫∞

t̂ g(t)dt
(ut̂(N)− ut̂(N − 1))

]

= 0

⇐⇒ (1−δ)ut̂(N)
∫ t̂

0
g(t)dt

∫ ∞

t̂
g(t)dt +

(

1−
∫ t̂

0
g(t)dt

)

×
[

ut̂(N − 1)
(

∫ ∞

t̂
g(t)dt− δ

∫ τ1

t̂
g(t)dt

)

+ δut̂(N)
∫ τ1

t̂
g(t)dt

]

= 0.

(8)

Note that as δ → 1, i) the first term of the LHS of (8) becomes negligible, and ii) the second

term is strictly decreasing in t̂ (with the derivative bounded away from 0), clearly from a

positive value when t̂ = 0 to a negative value when t̂ = τ1. Hence, for δ sufficiently close

to 1 there exists a unique value of t̂ that solves (8), which is the equilibrium cutoff level in

the period following the history hk, or equivalently, in the period with s = 2 and density g,

denoted by τ2(g|δ). Furthermore, since the first derivative of the LHS w.r.t. t̂ when δ = 1

is bounded away from 0 by a number independent of g (because this derivative is bounded

above by maxt u̇t(N − 1) ≤ −θ < 0), for any ε > 0 there exists δε < 1 (independent of g)

such that if δ > δε then τ2(g|δ) uniquely exists and |τ2(g|δ)− τ2(g|1)| < ε. Summarizing,

Lemma A2: For any ε > 0, there is δε(2) < 1 such that if δ > δε(2) then the

equilibrium strategy in state s = 2 with any density g is a cutoff strategy at τ2(g|δ), the

unique level of t̂ that solves (8), and |τ2(g|δ)− τ2(g|1)| < ε.

STEP A3: Fix a state s̃ and consider the following property in a symmetric equilibrium:

[A’] For any ε > 0, there is δε(s̃) < 1 such that if δ > δε(s̃) then the equilibrium strategy

in any state s < s̃ with any density g is a unique cutoff strategy at τs(g|δ) and

|τs(g|δ)− τs(g|1)| < ε.

Note that this property holds along an equilibrium when s̃ = 3 by Lemma A2, and trivially

if s̃ < 3. We now make an induction hypothesis that the property [A’] holds for all s̃ ≤ r

where r = 3, · · · , N , along an equilibrium. Then, we establish that under this hypothesis

the property [A’] holds for s̃ = r + 1 as well. For this it suffices to show Lemma A3 below.

Lemma A3: Suppose [A’] holds for some s̃. Then, for any ε > 0, there is δ′ε(s̃) < 1

such that if δ > δ′ε(s̃) then the equilibrium strategy in state s̃ with any density g is a

unique cutoff strategy at τs̃(g|δ) and |τs̃(g|δ)− τs̃(g|1)| < ε.
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Proof: Fix ε > 0. Consider an equilibrium of the subgame, Γ(s̃, g), starting with a

state s̃ and a density g. Let g′ denote the equilibrium density after the first period of this

subgame. Note from Section 3 that when δ = 1 the equilibrium cutoff levels after the first

period of this subgame only depends on the state, which we denote by τs(g′|1) for s < s̃.

Also note that τs(g′|1) < τr(g′|1) if r < s < s̃ and therefore, by supposition of Lemma A3,

the cutoff level decreases in the state for δ sufficiently close to 1.

Consider a remaining agent i of type ti < τs̃−1(g′|δ) in the first period of this subgame.

First, consider the contingency that at least one other agent adopts in this period. If δ = 1

and the agent i did not adopt in this period, by adopting in the next period he can ensure

the same final network size as the one that would have resulted if he adopted in the first

period, by the same argument as the proof of Lemma 3. For δ sufficiently close to 1 so that

τs(g′′|δ) is arbitrarily close to τs(g′′|1) = τs(g′|1)7 for all s < s̃ and g′′ that may arise in

future periods, the following holds: If the agent i did not adopt in this period, by adopting

in the next period he can ensure with arbitrarily large probability the same final network

size as the one that would have resulted if he adopted in the first period; and in this case

agent i’s utility differential when adopt now and when adopt in the next period (which he

will surely do because ti < τs̃−1(g′|δ)) vanishes as δ → 1. The utility differential for the

case that the final network is not the same also vanishes as δ → 1 because the probability

vanishes that such a case gets realized.

Next consider the contingency that no other agent adopts in the first period. In

this contingency, agent i would get a utility uφ = 0 by not adopting in this period. If

agent i adopted in this period, other agents would adopt in future periods according to the

equilibrium cutoff levels. As δ → 1, agent i’s utility in this case is arbitrarily approximated

by the expected utility level of uti(ν) calculated using the probabilities that ν is the number

of other agents who eventually adopt. (Note these probabilities is independent of ti.) This

expected utility level is strictly decreasing in ti to a negative value at τi = τs̃−1(g′|δ), and

the rate at which it decreases is bounded away from 0 independently of g′ (because the

rate each uti(ν) decreases is bounded away from 0). Therefore, there is δ′′ < 1 such that

the expected benefit of agent i of adopting in this period as opposed to waiting is strictly

decreasing in ti if δ > δ′′ in any equilibrium of the subgame Γ(s̃, g) for any g, hence the

equilibrium strategy in this period is a cutoff strategy at a level τs̃(g|δ) < τs̃−1(g′|δ).
Finally, let Eut̂(g|δ) denote the expected benefit of agent i of type t̂ < τs̃−1(g′|δ) of

7 This equality follows because from next period on the cutoff level depends only on the state when
δ = 1, as shown in Section 3.
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adopting in this period as opposed to waiting when g is the density and t̂ is the cutoff level

in this period and τs(g′′|δ) is the cutoff level of relevant future periods when the state is

s < s̃ and g′′ is the density. (τs(g′′|δ) is well-defined by [A’].) As shown in Section 3 (in the

proof of Lemma 4), Eut̂(g|1) is strictly decreasing in t̂ due to 2 factors: i) ut̂(ν) strictly

decreases in t̂ for each ν, and ii) the distribution of the final number of future adopters in

case only agent i adopts in this period, deteriorates as t̂ increases in the sense of first-order

stochastic dominance. Since the factor ii) only reinforces the decrease, the rate at which

Eut̂(g|1) decreases is bounded above by −θ, hence bounded away from 0 independently

of g. Since Eut̂(g|δ) is arbitrarily closely approximated by Eut̂(g|1) as δ → 1, there is

δ′′′ < 1 such that if δ < δ′′′ then the solution value of t̂ to Eut̂(g|δ) = 0 is arbitrarily close

to the solution value of t̂ to Eut̂(g|1) = 0. Setting δε(s̃) = min{δ′′, δ′′′} proves Lemma A3.

Q.E.D.

Recall that Lemma A3 establishes the induction argument that if the property [A’]

holds for all s̃ ≤ r where r = 3, · · · , N , then [A’] holds for s̃ = r + 1 as well. Applying this

result repeatedly, we conclude that [A’] holds for s̃ = N +1, i.e., at the beginning of period

1, thereby establishing that there is a threshold δ∗ < 1 such that if δ > δ∗ then there is

a unique symmetric equilibrium and this equilibrium converges to the unique equilibrium

characterized in Theorem 1 as δ → 1. This completes the proof of Theorem 2.

Proof of Theorem 3: First we consider the case δ = 1. The arguments that prove

Lemmas 3 and 4 do not rely on the equilibrium being symmetric. Therefore, it is straight-

forward (hence, details omitted) to extend these arguments to show that all equilibria are

cutoff equilibria and that the claim of Lemma 3 holds for asymmetric equilibrium, too.

Consider any sequence of equilibria, (aiN )N+1
i=1 , N = 1, 2, · · ·, where the superscript

N denotes the number of agents minus 1. (If asymmetric equilibrium does not exist for

some N , take the symmetric equilibrium.) Represent each equilibrium by the cutoff levels

τ iN (hk) for each N , each i = 1, · · · , N + 1, and each possible history hk. For each hk, let

τN (hk) = mini{τ iN (hk)} and τ̄N (hk) = maxi{τ iN (hk)}. It suffices to show that for each

hk, the two sequences τN (hk) and τ̄N (hk) converge to the same point as N →∞.

To reach a contradiction, suppose to the contrary that they do not for some hk.

By taking subsequences if necessary, this amounts to supposing that τN (hk) → a and

τ̄N (hk) → b and a < b, owing to supposition i) of Theorem 3. Let ` be the last element

of hk, i.e., ` agents adopted in the last period of hk. Clearly, t̄` ≤ a because a t̄`-type

agent would certainly join if ` other agents already adopted. Consider the agent with the
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cutoff level τ̄N (hk). Recall that if this agent is the sole adopter in period k and he is

of τ̄N (hk)-type, his expected payoff is 0. In this contingency (i.e., when he is the sole

adopter in period k), if the probability of additional adoption converges to 0 as N tends

to infinity, then τ̄N (hk) would have to converge to t̄`. Since this would contradict a < b,

the probability of additional adoption converges to a positive number. Then, the expected

payoff of this agent, say agent i, in this contingency is strictly decreasing in his type, and

the rate at which it does so is bounded away from 0 due to supposition ii). Consider

the expected payoff of any other agent, say j, in the contingency that agent j is the sole

adopter in period k. For sufficiently large N , the effect of agent i in agent j’s expected

payoff is negligible, and so is that of agent j in the corresponding expected payoff of agent

i. Therefore, the expected payoff schedule of agent j (as a function of t) is arbitrarily close

to that of agent i. Since the slope of the latter is bounded away from 0 as discussed above,

it follows that τ jN (hk), the type for which agent j’s expected payoff is 0, converges to

τ̄N (hk), that for agent i. Since agent j was chosen arbitrarily and τ̄N (hk) → b as N →∞,

we end up with a contradiction to τN (hk) → a < b.

For δ ∈ (δ∗, 1) we provide a proof based on an alternative argument. Note that if

one agent adopts in period 1, every other agent would have adopted by period 2 with a

probability at least F (t̄1) > 0, hence the expected number of other adopters by period 2

increases with N . Since u0(1) > 0, this implies that every agent adopts in period 1 with

a probability that is bounded away from 0, say by α > 0, for large enough N . Then,

the expected number of adopters in period 1 increases without bound as N → ∞ and,

therefore, the first period cutoff level in any asymmetric equilibrium converges to t̄∞. Since

the cutoff levels of the symmetric equilibrium also converge to t̄∞, it follows that the set

of types that would have adopted by any particular period in any asymmetric equilibrium

converges to that of the unique symmetric equilibrium as N → ∞. This completes the

proof of Theorem 3.
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