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1 Introduction

Generalized method of moments (GMM) and its special cases instrumental variables (IV)

and two-stage least squares (2SLS) are frequently used to estimate parametric models in

econometrics. These models specify moments as functions of data and a finite-dimensional

parameter vector. The functional form is assumed to be known, apart from the param-

eters. In many applications, it is desirable to test the validity of the assumed functional

form. In some cases there may be an obvious alternative model to test against. Often,

however, there are no obvious alternatives. In this paper, we develop a test of func-

tional form, which has power against models which specify the moments as functions of

data, a finite-dimensional parameter vector, and a real function (an infinite-dimensional

parameter vector).

Our test is based on the ideas of Aerts, Claeskens, and Hart (1999). They consid-

ered testing a parametric fit against a nonparametric alternative within several estima-

tion frameworks: maximum likelihood, quasi-maximum likelihood, and general estimating

equations. Their test is based on a sequence of LM test statistics, each designed to test

against a specific parametric alternative. The sequence nests the null model, and in the

limit it spans the class of models which can be written as functions of data, a finite-

dimensional parameter vector and a real function. The LM statistics are divided by their

degrees of freedom, and a single test statistic is constructed as the largest of these weighted

LM statistics.

In this paper we extend these ideas to the testing of models which are formulated

as restrictions on moment functions. Such models include regression models, models

estimated by IV and, more generally, models estimated by GMM. In particular, our

extension is applicable in overidentified models. There are two important new issues to

consider when extending the original test to a GMM framework, namely identification of

the model under the alternative and the selection of moment restrictions to use in the

construction of the LM statistics. We discuss two approaches to the selection issue. For

simplicity we shall refer to our extension as the GMM-ACH test.

Although the GMM-ACH approach is flexible and can be tailored to test against mis-
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specification in any specific direction, importantly it can also be used to test the overall

validity of a conditional moment restriction. There is a large literature on testing the

validity of conditional moment restrictions. The central idea of the Integrated Condi-

tional Moment (ICM) tests developed by Bierens (1982), Bierens (1990), and Bierens and

Ploberger (1997) is to replace the conditional moment restriction with an equivalent set

of unconditional moment restrictions based on, e.g., exponential weight functions. The

ICM tests were developed for regression models, but can easily be adapted to test for

functional-form specification in models with endogenous explanatory variables. In the

tests considered by Donald et al. (2003), the conditional moment restriction is replaced

with an equivalent sequence of unconditional moment restrictions based on series (see also

Newey, 1985, and de Jong and Bierens, 1994). The GMM-ACH test uses the same setup

as their GMM-test, but where the latter is based on Hansen’s J-statistic the GMM-ACH

tests is based on a sequence of LM statistics. Other approaches to testing the validity

of a conditional moment restriction considers tests based on a marked empirical pro-

cess and Kolmogorov-Smirnov or Cramér-von Mises statistics, see Stute (1997), Andrews

(1997), Whang (2001), and Van Keilegom et al. (2008), and tests based on nonparametric

estimation, see Tripathi and Kitamura (2003).1

Finally, the test proposed by Horowitz (2006) has a form similar to the ICM test, but

uses a particular class of density functions for weighting instead of exponential functions.

Horowitz proved that his test has better power properties than previously considered

tests. Moreover, his simulation evidence suggests that his test has significantly better

finite-sample power than the tests proposed by Bierens (1990), Tripathi and Kitamura

(2003) and Donald et al. (2003). However, implementing Horowitz’s test can be nontrivial,

in part because it is not asymptotically pivotal. This implies that the critical values must

be computed specifically for each application.

We compare the performance of the GMM-ACH test to some of the existing tests

in a Monte Carlo study. Given the similarities with Donald et al.’s (2003) test and

1The nonparametric smoothing approach is somewhat hampered in IV models by ill-posed inverse
problems; see e.g. Horowitz and Spokoiny (2001) for references to tests for models with no endogenous
regressors. For testing conditional moment restrictions with dependent data, see e.g. Escanciano (2007).
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given Horowitz’s (2006) power results, we focus on these competing tests. The results

confirm that the test by Horowitz tends to have the better power. The GMM-ACH test,

however, has power close to (and some cases better than) that of Horowitz’s test in these

simulations. The test by Donald et al. has the lowest power of the three. A second Monte

Carlo study compares testing against misspecification in a specific direction with testing

against overall misspecification. The results show that the potential power gains of a

specific test can be substantial.

In comparison with some of the other tests in the literature, including the test by

Horowitz (2006), the GMM-ACH test is relatively simple to implement. In particular, the

asymptotic distribution and hence the asymptotic critical values of the test are known.

Moreover, since the test is based on LM statistics it is not necessary to estimate any

alternative models, which is an advantage in some applications. We anticipate that in

most applications performing the test involves, in principle, nothing more complicated

than taking derivatives and inverting matrices.

The paper is structured as follows. Section 2 introduces the GMM-ACH test and

explains the mechanics of the test in a simple and familiar IV setting. Section 3 considers

the general GMM setting. We focus on the case where the infinite-dimensional parameter

vector is an unknown function of a real variable, but discuss the extension to functions

of several variables at the end. Section 4 presents examples of GMM-ACH tests in linear

multiple regression models with endogenous explanatory variables, including an empirical

example based on an Engel curve model. Section 5 concludes.

Throughout the paper, 0(a×b) denotes an a×b-dimensional matrix of 0s and I(j) denotes

the j-dimensional identity matrix. The symbol 0 is also used to denote a function which

maps the real line to the number 0.

2 A simple IV model

In this section, we use a simple IV setup to explain how the GMM-ACH test is constructed.

In the first subsection, we consider a version of the GMM-ACH test which uses the

minimum number of moment restrictions required for each LM statistic. In the second
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subsection, we discuss a version which uses the same set of moment restrictions for all

LM statistics. In the last subsection we present the results of a Monte Carlo study.

2.1 Minimum number of moment restrictions

The objective is to test a given parametric model against a nonparametric alternative

model. Using subscript i to indicate a generic observation, let yi be a scalar left-hand

side variable, let xi be a scalar right-hand side variable, and let zi be a scalar instrument.

Assume n independent observations are available. In this section the parametric model

of interest is

yi = x′
0iβ

∗ + ui, E(ui|zi) = 0, β∗ ∈ R
2, (1)

where x0i = (1, xi)
′, β∗ is an unknown two-dimensional parameter vector and ui is an

unobserved random variable. The nonparametric alternative model is the nonlinear model

given by

yi = x′
0iβ

∗ + γ∗(xi) + ui, E(ui|zi) = 0, β∗ ∈ R
2, γ∗ ∈ Γ, (2)

where γ∗ : R → R is an unknown function and Γ is a set of square integrable real functions.

We assume that functions of the form x′
0iβ are excluded from Γ. We also assume that

0 ∈ Γ, so that model (2) nests model (1). In terms of (2), the null hypothesis is that

γ∗ = 0 and the alternative hypothesis is that γ∗ �= 0.

The GMM-ACH test is based on four steps. The first step is to construct a sequence

of nested parametric alternative models which approximate the nonparametric model (2).

A series expansion of γ∗ is used for this purpose. Let b1, b2, . . . be a sequence of basis

functions (bk : R → R for k = 1, 2, . . .) and assume that for each γ ∈ Γ there are

coefficients αγ1, αγ2, . . . such that
∑j

k=1 αγkbk converges to γ as j → ∞. The sequence of

nested parametric alternative models is based on the partial sums of the series expansion.
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Define the functions g1, g2, . . . by

gj(e, θj) =

j∑
k=1

θjkbk(e), j = 1, 2, . . . , (3)

where θj = (θj1, . . . , θjj)
′ ∈ R

j is a j-dimensional parameter vector and e ∈ R
1. Under

suitable regularity conditions, γ∗ can be approximated arbitrarily well by gj(·, θj) by

taking j large enough and choosing the appropriate θj .
2 Let θ∗1, θ

∗
2, . . . denote these

“pseudo-true” parameter vectors. A sequence of approximate alternative models can

therefore be constructed as3

yi = x′
0iβ

∗ + gj(xi, θ
∗
j ) + uji, E(uji|zi) → 0 as j → ∞,

β∗ ∈ R
2, θ∗j ∈ R

j, j = 1, 2, . . . . (4)

In terms of (4), the null hypothesis is that θ∗j = 0(j×1) for all j = 1, 2, . . . and the alternative

hypothesis is that θ∗j �= 0(j×1) for some j = 1, 2, . . ..

The second step in the GMM-ACH test concerns the identification of the parameters

in the null model and in the approximate alternative models. In this section, we have

chosen to specify the models using the conditional moment restriction E(ui|zi) = 0. We

assume that this conditional moment restriction identifies the parameters under the null

as well as under the alternative. In practice, if xi is continuously distributed, then it is

convenient to base estimation and testing on unconditional moment restrictions. Since

E(ui|zi) = 0 implies E(uit(zi)) = 0 for any choice of function t : R → R, arbitrarily

many unconditional moment restrictions can easily be constructed. At least 2 moment

restrictions are needed to identify and estimate β∗, and at least 2+ j moment restrictions

are needed to identify and test hypotheses about (β∗′, θ∗j
′)′. A natural choice of additional

instrument for identifying the coefficient on bk(xi) is bk(zi).

2To establish equivalence between (2) and (4) using Lemma 2.1 of Donald et al. (2003), the regularity

conditions include that E(γ(xi)
2) < ∞ and that E[(γ(xi) −

∑j
k=1 αγkbk(xi))

2] → 0 as j → ∞ for all
γ ∈ Γ. For an introduction to the use of series in econometrics, see for example Pagan and Ullah (1999).

3In practice, it may happen that x0i and the basis functions used in the construction of gj are collinear.
Indeed, this happened in the power function basis example offered just above. Since we are not interested
in the latter per se, the offending terms may simply be omitted from gj .
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We proceed here by constructing an GMM-ACH test based on using the minimum

number of moment restrictions required in each calculation. In the next section we discuss

a version of the test which uses the same set of moment restrictions in all calculations.

Under the null, assume β∗ in (1) is identified by the two unconditional moment restrictions,

E
(
z0i(yi − x′

0iβ
∗)
)
= 0(2×1), β∗ ∈ R

2, (5)

where z0i = (1, zi)
′. Under the alternatives, assume that (β∗′, θ∗j

′)′ is identified by the

2 + j unconditional moment restrictions

E
(
zji(yi − x′

0iβ
∗ − gj(xi, θ

∗
j ))

) → 0(2+j×1) as j → ∞,

β∗ ∈ R
2, θ∗j ∈ R

j, j = 1, 2, . . . , (6)

where zji = (1, zi, b1(zi), . . . , bj(zi))
′ for j = 1, 2, . . .. Since the number of moment re-

strictions equal the number of parameters, the parameters are exactly identified for each

j.

The third step in the GMM-ACH test is to calculate j statistics, one for testing the

null model (1) against each of the approximate alternative models given in (4). There

are several statistics which can be used. Here we follow Aerts et al. (1999) and use LM

statistics. First we estimate the model under the null by solving the empirical analogues

of (5). That is, the estimator, β̃ =
(
n−1

∑n
i=1 z0ix

′
0i

)−1(
n−1

∑n
i=1 z0yi

)
, is the solution in

β to

n−1
n∑

i=1

z0i(yi − x′
0iβ) = 0(2×1). (7)

For given j, the first-order conditions for joint estimation of β and θj are similarly

n−1

n∑
i=1

zji(yi − x′
jiδj) = 0(2+j×1), j = 1, 2, . . . , (8)

where δj = (β ′, θ′j)
′ ∈ R

2+j and xji = (1, xi, b1(xi), . . . , bj(xi))
′ for j = 1, 2, . . .. We
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then construct an LM test based on the fact that if the null is true, then the first-order

conditions should be (approximately) satisfied when evaluated at the parameter estimate

obtained under the null; that is, at β = β̃ and θj = 0(j×1). We show in Section 3 and

Appendix A that the LM statistic can be calculated as4

Rj = M ′
j(A

−1
j )′H ′

j

(
HjA

−1
j Bj(A

−1
j )′H ′

j

)−1
HjA

−1
j Mj , j = 1, 2, . . . , (9)

where5

Mj = n−1
n∑

i=1

zji(yi − x′
0iβ̃), j = 0, 1, . . . . (10)

Aj = −n−1

n∑
i=1

zjix
′
ji, j = 0, 1, . . . , (11)

Bj =
1

n

(
n−1

n∑
i=1

(yi − x′
0iβ̃)

2zjiz
′
ji

)
, j = 0, 1, . . . , (12)

Hj =

[
0(j×2) I(j)

]
, j = 1, 2, . . . . (13)

Given j, the LM statistic Rj has an asymptotic χ2
j -distribution under the null.

Although perhaps not obvious from (9), note that the LM statistic has the form

Rj = M ′
jVar(Mj)

−Mj , where Var(Mj)
− is a generalized inverse of the variance matrix of

Mj or an estimate of that matrix. A generalized inverse is required since by construction

the first two components of Mj are 0. Calculation of Var(Mj)
− is complicated by the fact

that Mj depends on the estimated parameter β̃, and the nesting properties of M0 and Mj

and of A0 and Aj , which follow from the definition of x0i, x1i, . . . and z0i, z1i, . . . , are

crucial in deriving (9). We discuss the nesting property in more detail in Section 3.

The fourth and final step in the GMM-ACH test is to construct an overall test statistic

4The simple IV setup with exact identification is almost a special case of the GEE setup considered
by Aerts et al. (1999). Their LM statistic is valid only if Aj is symmetric (e.g. if zi = xi). They
stated the LM statistic in a different form. Let [X ]j denote the lower right j × j-submatrix of the
(2 + j) × (2 + j)-matrix X or the last j elements of the (2 + j)-vector X , then Rj can be expressed as

Rj = [Mj ]
′
j [A

−1
j ]j

(
[A−1

j BjA
−1
j ]j

)−1
[A−1

j ]j [Mj ]j .
5For simplicity the dependence of Rj , Mj , Aj , Bj (and other random matrices defined below) on n is

suppressed in the notation.
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by taking the maximum over a sequence of weighted LM statistics. The weights are the

reciprocal of the degrees of freedom of the individual statistics. Specifically, the GMM-

ACH test statistic is

Sr = max
1≤j≤r

(Rj/j), (14)

where r is an upper bound which should be increasing in n.6 In Section 3, we argue that

the distribution of Sr under the null converges, as r → ∞ and n → ∞, to a distribution

which does not depend on any unknown population characteristics. Hart (1997, p178)

tabulated this distribution, and the 1%, 5% and 10% critical values are 6.75, 4.18 and

3.22. The requirement that r → ∞ is not important for picking the critical value; Aerts,

Claeskens, and Hart (1999, p872) claimed that the asymptotic approximation is usually

fine for critical values less than 10% as long as r > 5.

It is worth noting that if an appropriate sequence of instruments is used, then the

GMM-ACH test described in this section is in fact a test of the conditional moment re-

striction E(yi − x′
0iβ

∗|zi) = 0 against the negation E(yi − x′
0iβ|zi) �= 0 for all β ∈ R

2.

That is, the alternative hypothesis is broader than suggested by (2). Intuitively, this fol-

lows because the sequence of unconditional moment restrictions E((yi − x′
0iβ

∗)bzj (zi)) = 0

for j = 1, 2 . . . is equivalent to the original conditional moment restriction under ap-

propriate regularity conditions.7 Therefore, if the null is false, there is some j∗ such

that n−1
∑n

i=1 b
z
j∗(zi)(yi − x′

0iβ̃) converges to a nonzero constant and hence Rj∗ →p ∞ as

n → ∞. Since Rj∗ defined in this section remains unchanged as r → ∞, it follows that

Sr →p ∞ as r → ∞ and n → ∞.

Finally, note that the LM and GMM-ACH statistics presented in this subsection do

not depend on the specification of the alternative model. That is, despite the facts that

6In a likelihood framework, rejecting the null if Sr is large is equivalent to rejecting the null if the
Akaike Information Criterion (AIC) of one of the alternative models is sufficiently larger than the AIC of
the null model. For further discussion of the connection between the GMM-ACH and the AIC statistics,
see Aerts et al. (1999).

7See e.g. Bierens (1982, Theorem 2) and Donald et al. (2003, Lemma 2.1). The latter requires that for

each t with E(t(zi)
2) <∞ there are coefficients αt1, αt2, . . . such that E

[(
t(zi)−

∑j
k=1 αtkb

z
k(zi)

)2] → 0 as
j → ∞. The instrument sequence used in the text is bz1(zi) = 1, bz2(zi) = zi, b

z
3(zi) = b1(zi), b

z
4(zi) = b2(zi)

etc. where bk : R → R for k = 1, 2, . . . and E(bk(xi)bk′(xi)) <∞.
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Aj appears in (9) and that Aj depends on xji, the LM statistics depend numerically only

on x0i. The derivations in Appendix A.2 show that the columns of Aj corresponding

to the derivatives of the moments with respect to the parameters θj in the approximate

alternative model drop out of the formula in (9).8 This is a consequence of using the

minimum number of moment restrictions, and holds both in the simple IV model presented

in this section and in the setup discussed in Section 3.3. In the next subsection, we

present a version of the GMM-ACH test where there are more moment restrictions than

parameters, and here the alternative model plays a substantive role.

2.2 Same set of moment restrictions

The version of the GMM-ACH test presented above is based on using the minimum

number of moment restrictions required to identify the parameters under the null and the

alternative hypotheses. The literature on hypothesis testing in IV and GMM settings (see

e.g. Engle, 1984; Newey and McFadden, 1994) usually recommends using the same set of

moment restrictions under both the null and the alternative. For notational simplicity, we

consider the case where there are 2 + r moment restrictions in this section. The general

case presented in Section 3 allows for an arbitrary number (equal to or larger than 2+ r).

In this case, (5) and (6) are replaced by

E
(
zri(yi − x′

0iβ
∗)
)
= 0(2+r×1), β∗ ∈ R

2, (15)

and

E
(
zri(yi − x′

0iβ
∗ − gj(xi, θ

∗
j ))

) → 0(2+r×1) as j → ∞ and r → ∞,

β∗ ∈ R
2, θ∗j ∈ R

j, j = 1, . . . , r. (16)

Except in the case where j = r, there are more equations than unknown parameters in

(15) and (16).

8See equations (66) and (67) in Appendix A.2. When the test statistic does not depend on the
specification of an alternative model, the convergence conditions imposed on the series expansion in the
beginning of this section are redundant.
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Since the parameters are overidentified, we estimate β∗ using 2SLS. The 2SLS esti-

mator, β̃, based on (15) is

β̃ = (A′
0WrA0)

−1A′
0Wr

(
n−1

n∑
i=1

zriyi

)
, (17)

where A0 = −n−1
∑n

i=1 zrix
′
0i, and the weight matrix is Wr =

(
n−1

∑n
i=1 zriz

′
ri

)−1
. For

given j, the 2SLS first-order conditions for estimation of β and θj are

A′
jWr

(
n−1

n∑
i=1

zri(yi − x′
jiδj)

)
= 0(2+j×1), j = 1, . . . , r, (18)

where Aj = −n−1
∑n

i=1 zrix
′
ji and δj = (β ′, θ′j)

′ ∈ R
2+j for j = 1, . . . , r. The LM statistic

is constructed from (18) evaluated at β = β̃ and θj = 0(j×1). As in Section 2.1, calculation

of the variance of these first-order conditions is complicated by the randomness of β̃, but

facilitated by the nesting properties imposed on A0 and Aj via the construction of the

approximate alternative models. We show in Section 3 and Appendix A that, for each j,

LM statistics for testing θ∗j = 0(j×1) against θ
∗
j �= 0(j×1) using (16) can be constructed as

Rj = M ′
rWrAjJjA

′
jWrMr, j = 1, 2, . . . , (19)

where Aj for j = 0, . . . , r are defined above and

Mr = n−1
n∑

i=1

zri(yi − x′
0iβ̃), (20)

Br =
1

n

(
n−1

n∑
i=1

(yi − x′
0iβ̃)

2zriz
′
ri

)
, (21)

Cj = (A′
jWrAj)

−1A′
jWrBrWrAj(A

′
jWrAj)

−1, j = 1, . . . , r, (22)

Jj = (A′
jWrAj)

−1H ′
j

(
HjCjH

′
j

)−1
Hj(A

′
jWrAj)

−1, j = 1, . . . , r, (23)

and Hj is defined in (13). Finally, the GMM-ACH statistic is Sr = max1≤j≤r(Rj/j), as

before. The asymptotic distributions, as r → ∞ and n → ∞, of the LM statistics and
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the GMM-ACH statistic are the same as in the previous section.

Intuitively, when the minimum number of moment restrictions are used, the LM statis-

tics are large if the additional instruments in zji are correlated with the residuals from

the null model. When the same set of moment restrictions are used, the LM statistics

are large if the columns in Aj corresponding to the additional regressors in xji are not

orthogonal to the weighted empirical moments from the null model, WrMr. Since the

first depends on additional instruments and the other on additional regressors, the two

versions of the test may have different power properties. The next subsection presents a

small Monte Carlo study which compares the two versions of the GMM-ACH test.

2.3 A small Monte Carlo study

In the remainder of this section we present and discuss simulation results on the finite-

sample behavior of several versions of the GMM-ACH test for the simple IV model. We

consider both the test based on the minimum number and on the same set of moment

restrictions, and we calculate the tests using both power and Fourier flexible form bases

in the series approximation. We compare the GMM-ACH tests with the tests developed

by Donald et al. (2003) and Horowitz (2006), as well as with simple ad hoc t and LM

tests.

The setup considered by Donald et al. (2003) is similar to ours, but their test is based

on the J-statistic for overidentifying restrictions. In general, the J-test does not have

power against nonparametric alternatives. Donald et al. modified the J-test by letting

the number of overidentifying restrictions depend on the sample size. As the sample

size increases, the test gains power against a larger set of alternatives. The additional

moment restrictions are generated from a conditional moment restriction, as described in

Section 2.1.

As explained in the Introduction, Horowitz (2006) developed a test similar in form to

the ICM test by Bierens (1982). Horowitz proved that the power of his test is arbitrarily

close to 1 uniformly over a class of alternatives whose distance from the null hypothesis

is of order n−1/2. He compared several specification tests in a simulation study and found
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that they have inferior power properties compared to his own test. For simplicity, we focus

on comparing the GMM-ACH test with the tests by Donald et al. (2003) and Horowitz

(2006) in this section.

As a benchmark, we report a simple t test based on the model obtained by adding

one additional term to the null model. Since in most cases this alternative coincides with

the data-generating process, we expect this t test to have very good power properties. In

practice, the data-generating process is likely to be more complicated and we would then

expect a t test to have less favorable power properties.

Finally, to illustrate the effect of taking the maximum of weighted LM test statistics

against a sequence of parametric alternatives, we also report on the properties of an

ordinary LM test against the largest (rth) parametric alternative.

The designs, and some of the results, are taken from Horowitz (2006). The data-

generating process for all these experiments is

yi = β0 + β1xi + β2x
2
i + β3x

3
i + ui, (24)

xi = Φ
(
ρv1i + (1− ρ2)1/2v2i

)
, (25)

zi = Φ(v1i), (26)

ui = 0.2(ηv2i + (1− η2)1/2v3i), (27)

where Φ denotes the standard normal distribution function, v1i, v2i and v3i are independent

standard normal random variables, and β0, β1, β2, β3, ρ and η are scalar parameters which

vary across designs.

The results are shown in Table 1. Technical details of the implementation are given in

the table notes.9 The results in the first part of the table show that the different versions

of the GMM-ACH test have good level control. The only exception is the design where

the GMM-ACH test is based on 2SLS and a power function basis. In that design the

GMM-ACH test rejects too much and, perhaps surprisingly, so does the t test. In most

9Horowitz (2006) held v1i and v2i constant in repeated samples for the HOR test, but not for the DIN
test. We use exactly the same simulated data (same random seed, v1i and v2i constant) as Horowitz used
for the HOR test.
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other cases the level is correct within Monte Carlo sampling error (±1.4 percentage point

for a 5% test) or it is too low. This may cause lower power.

The second part of Table 1 shows that the GMM-ACH tests have power comparable

to Horowitz’s test in these designs, and in some cases even better power. The test by

Donald et al. has significantly lower power in most of the designs. Notice also that the

idea of combining a sequence of LM test statistics into the GMM-ACH test generally has

a positive effect on power. For many of the designs, there is a power loss of about 20

percentage points when doing a single LM test rather than doing the GMM-ACH test.

In sum, it appears that the GMM-ACH test has good properties. The level is well

controlled, and the power is close to that of Horowitz’s test and much better than Donald

et al.’s test. A power basis seems to yield better power than a Fourier flexible form basis.

However, this is not surprising given that the data generating process is polynomial. The

simulations do not show a clear favorite between using the minimum number or the same

set of moment restrictions in the GMM-ACH test. Finally, we note that the power of the

GMM-ACH test is generally higher than the power of the ad hoc LM test.

3 A GMM-based specification test

The previous section presented the main ideas of the GMM-ACH test in the context of

a simple linear IV model. In this section we develop the GMM-ACH test for a general

nonlinear model identified by moment restrictions. Our framework includes many models

of interest in economics such as system of equations models (typically estimated by two-

stage least squares) and dynamic panel data models with fixed effects (typically estimated

by GMM). When the parameters are overidentified, these models are not included in the

frameworks discussed by Aerts et al. (1999).

The presentation is divided into several subsections. The first sets up the null and the

alternative hypotheses. The second subsection reviews GMM estimation and LM testing

and defines the GMM-ACH statistic. Subsections three and four considers two consistent

versions of the test, one using the minimum number of moment restrictions and the other

using the same set of moment restrictions in all calculations. The final subsection offers



14

remarks.

3.1 Model and hypotheses

Some econometric models are stated in terms of conditional moment restrictions (e.g.

simple IV models, financial time series models) and others in terms of unconditional

moment restrictions (e.g. dynamic panel data models). Ultimately the estimation of most

models is based on unconditional moment restrictions, and we therefore specify the general

model in terms of unconditional moment restrictions. We discuss how the GMM-ACH

approach can be used to test conditional moment restrictions in Section 3.5.

The setting is the following. Assume n independent observations are available for

analysis. Let vi be a generic random vector of data, let β∗ be an unknown h-vector of

parameters, and let γ∗ : Rd → R be an unknown function. Let F be a known infinite-

dimensional vector of functions of these three quantities. The econometric model is cast

in terms of a vector of moment restrictions,

E
(
F (vi, β

∗, γ∗)
)
= 0, β∗ ∈ R

h, γ∗ ∈ Γ, (28)

where 0 here represents an infinite-dimensional vector of 0s and where Γ is set of square

integrable real functions. We assume that the null function is in Γ; i.e. 0 ∈ Γ. We also

assume that (28) identifies β∗ and γ∗. As in Section 2, this may require exclusion of

certain (e.g. linear) functions from Γ. In general it is not possible to identify a function

(equivalent to an infinitely-dimensional parameter) such as γ∗ from a finite set of moment

restrictions, which is why we allow F to be infinitely-dimensional. In terms of (28), the

null hypothesis is that γ∗ = 0. The alternative hypothesis is that γ∗ �= 0.

The range of null and alternative models which can be cast in the form of (28) is very

wide. We provide some examples in Section 4. The generality of (28) and the fact that we

have made few assumptions about γ∗ and how γ∗ interacts with vi and β∗ are strengths of

the GMM-ACH approach. Often, γ∗ will simply be a function of one of the components of

vi. In multiple-equation models such as dynamic panel data models, γ∗ may be a function



15

of a different component of vi in each equation. In general, the argument of γ∗ may be a

function involving both vi and β∗ as in single-index models.

The GMM-ACH approach to testing the null against the nonparametric alternative is

based on approximating the unknown γ∗ with a sequence of nested parametric alternatives,

g1, g2, . . . . The construction of this sequence is explained in Section 2.1 for the case of

a scalar argument (d = 1). A sequence of approximating functions with a multivariate

argument (d ≥ 1) can be constructed similarly. Specifically, let c1, c2, . . . denote an

ordered sequence of basis functions (ck : Rd → R for k = 1, 2, . . .) such that for each

γ ∈ Γ there are coefficients αγ1, αγ2, . . . such that
∑j

k=1 αγkck converges to γ as j → ∞.

A sequence of approximating functions g1, g2, . . . can be defined as

gj(e, θj) =

λj∑
k=1

θjkcj(e), j = 1, 2, . . . , (29)

where θj = (θj1, . . . , θjλj
)′ ∈ R

λj and λj ≥ λj−1 + 1 with λ0 = 0. Here λj denotes the

number of parameters in (or terms in the partial sum of) the jth approximating function.

For reasons discussed in Section 3.5, it is desirable to allow λj to be larger than j.

Since only a finite number of parameters are unknown under the null and the para-

metric alternatives, they may be identified from a finite set of moment restrictions. For

j = 1, 2, . . ., let Fj denote the first lj components of F . Under the null, assume without

loss of generality that β∗ is identified (possibly overidentified) by the l0 moment restric-

tions

E
(
F0(vi, β

∗, 0)
)
= 0(l0×1), β∗ ∈ R

h. (30)

Under the parametric alternatives j = 1, 2, . . ., let θ∗1, θ
∗
2, . . . denote the “pseudo-true”

values, and assume similarly that β∗ and θ∗j are identified (possibly overidentified) by the
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lj moment restrictions10

E
(
Fj(vi, β

∗, gj(·, θ∗j ))
) → 0(lj×1) as j → ∞,

β∗ ∈ R
h, θ∗j ∈ R

λj , j = 1, 2, . . . . (31)

In terms of the parameters of the approximating models, the null hypothesis can be

restated as θ∗j = 0(λj×1) for all j = 1, 2, . . ., while the alternative hypothesis is that

θ∗j �= 0(λj×1) for at least one of j = 1, 2, . . ..

3.2 Test statistics

We now review GMM estimation and LM testing. For convenience, define δ0 = β and δj =

(β ′, θ′j)
′ for j = 1, 2, . . .. Then define f0(·, δ0) = F0(·, β, 0) and fj(·, δj) = Fj(·, β, gj(·, θj))

for j = 1, 2, . . .. The GMM criterion functions, qj , are

qj(δj) = (1/2)mj(δj)
′Wjmj(δj), j = 0, 1, . . . , (32)

where Wj are some lj × lj symmetric weight matrices, and mj are estimators of the

moments E
(
fj(vi, δj)

)
, as a function of δj , defined by

mj(δj) = n−1
n∑

i=1

fj(vi, δj), j = 0, 1, . . . . (33)

For each j = 0, 1, . . ., the first-order condition for a minimum at δ̃j is Dqj(δ̃j) = 0(h+λj×1).

The derivatives of qj with respect to δj are

Dqj(δj) = aj(δj)
′Wjmj(δj), j = 0, 1, . . . , (34)

10To establish equivalence between (28) and (31) using Lemma 2.1 of Donald et al. (2003) certain
regularity conditions must be satisfied. The exact requirements will depend on the details of how γ∗

interacts with vi and β
∗. For example, suppose the argument of γ∗ can be written wi = ψ(vi) for some

known ψ. Then the conditions include that E(γ(wi)
2) <∞ and that E[(γ(wi)−

∑λj

k=1 αγkbk(wi))
2] → 0

as j → ∞ for all γ ∈ Γ. Also, as noted in Footnote 3, basis functions which are collinear with the null
model must be omitted from the series.
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where aj are the gradients of mj ,

aj(δj) = n−1
n∑

i=1

Dfj(vi, δj), j = 0, 1, . . . . (35)

Here Dfj denotes the lj × h+ λj-matrix of partial derivative functions of fj with respect

to δj . In many applications, the moment functions are linear in the parameters and the

first-order conditions can be solved analytically for δ̃j .

Define the “pseudo-true” parameter vector δ∗j = (β∗′, θ∗j
′)′ and define the restricted

estimator as δ̃0j = (δ̃′0, 0
′
(λj×1))

′ for j = 1, 2, . . .. Define the matrices

Hj =

[
0(λj×h) I(λj)

]
, j = 1, 2, . . . . (36)

With this notation, the null hypothesis can then be expressed as Hjδ
∗
j = 0(λj×1) for

j = 1, 2, . . ., while the alternative is that Hjδ
∗
j �= 0(λj×1) for some j = 1, 2, . . ..

LM statistics are based on the fact that if the null is true, then the derivative of the

GMM criterion function for model j should be close to 0(h+λj×1) when evaluated at δ̃0j .

For each j, LM statistics for testing Hjδ
∗
j = 0(λj×1) against Hjδ

∗
j �= 0(λj×1) have the form

Rj = Dqj(δ̃0j)
′Var(Dqj(δ̃0j))−Dqj(δ̃0j), j = 1, 2, . . . , (37)

where Var(Dqj(δ̃0j))
− is a generalized inverse of the variance matrix of the gradient

Dqj(δ̃0j) or an estimate of that matrix. Note that the rank of Var(Dqj(δ̃0j)) is λj. We

discuss estimation of Var(Dqj(δ̃0j)) and Var(Dqj(δ̃0j))
− below.

The GMM-ACH statistic, Sr, is the maximum of a sequence of weighted LM statistics

for testing the null hypothesis against the alternatives in the sequence, where the weights

are the reciprocal of the statistic’s degrees of freedom. Specifically,11

Sr = max
1≤j≤r

(Rj/λj), (38)

11While the LM statistic is convenient, alternatively one could base the GMM-ACH test on Wald or
distance metric tests.
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where r is some appropriately large integer (with r → ∞ as n → ∞).

In the theorems below we describe two cases where Sr is asymptotically pivotal; that

is, under the null its asymptotic distribution does not depend on any unknown population

quantities. Specifically, the asymptotic distribution is a transformation of the generalized

arc-sine distribution, namely

P(Sr ≤ s) → exp

(
−

∞∑
k=1

P(χ2
k > ks)

k

)
as r → ∞ and n → ∞, (39)

where χ2
k has a chi-square distribution with k degrees of freedom. As mentioned in

Section 2.1, asymptotic critical values have been tabulated by Hart (1997).

The nesting properties of the moment restrictions are important in the derivation of the

asymptotic distribution of the LM statistics and the GMM-ACH statistic. In particular,

the nesting properties are used to ensure that each LM statistic is asymptotically χ2
λj
-

distributed and the differences between Rj−1 and Rj for j = 2, 3, . . . are asymptotically

uncorrelated. For ease of reference, we state them as Assumption 1.

Assumption 1 Let l0 ≤ l1 ≤ · · · . For j = 1, 2, . . ., the first lj−1 components of fj(vi, δj)

equal fj−1(vi, δj−1) for all (vi, δj) such that δj = (δ′j−1, 0
′
λj−λj−1×1)

′, and the restricted

estimator is δ̃0j = (δ̃′0, 0
′
(λj×1))

′.

The theorems below require that each LM statistic is asymptotically χ2
λj
-distributed

under the null. Using Assumption 1, an estimator of Var(Dqj(δ̃0j)) is derived in Ap-

pendix A.1. Our setup is not quite standard and we have been unsuccessful in finding the

necessary results in the literature. Standard treatments of LM statistics assume that Wj

is an estimate of the optimal weight matrix and that the restricted estimator is obtained

from minimizing Dqj with respect to δj subject to the restrictions Hjδ
∗
j = 0(λj×1) (see

e.g. Newey and McFadden, 1994, Section 9). In the present case, the weight matrix, Wj ,

is arbitrary and the LM statistic is evaluated at δ̃0j , which is obtained from solving a

different problem, namely the unrestricted minimization of Dq0 with respect to δ0.
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3.3 Minimum number of moment restrictions

The first case we consider is where the number of moment restriction used under the null

and each parametric alternative equals the number of parameters in the corresponding

model. The simple IV model discussed in Section 2.1 is an example of such a setup.

In this case, the parameters are exactly identified both under the null and approximate

alternative hypotheses. Only a minimum number of moment restrictions are used in each

step. Define Mj = mj(δ̃0j) and Aj = aj(δ̃0j). When lj = h + λj for all j = 0, 1, . . ., then

Dqj(δ̃0j)
′Var(Dqj(δ̃0j))−Dqj(δ̃0j) is the same as M ′

jVar(Mj)
−Mj . Define

Bj =
1

n

(
n−1

n∑
i=1

fj(vi, δ̃0j)fj(vi, δ̃0j)
′
)
, j = 0, 1, . . . , (40)

Cj = A−1
j Bj(A

′
j)

−1, j = 1, 2, . . . , (41)

and

Jj = (A−1
j )′H ′

j

(
HjCjH

′
j

)−1
HjA

−1
j , j = 1, 2, . . . , (42)

then Jj is an estimator of Var(Mj)
−. In Appendix A.2, we show that the LM statistics

simplify to12

Rj = M ′
jJjMj , j = 1, 2, . . . . (43)

Note that, this is the same formula as (9) used in Section 2.1. IV estimators are invariant

to the choice of weight matrix, which also drops out of the formula for the LM statistics.

Theorem 1 below states sufficient conditions forRj to be asymptotically χ2
λj
-distributed

and provides the corresponding asymptotic distribution of Sr.

Theorem 1 Assumption 1 holds and regularity conditions are satisfied.13 For each j =

12This formula has the same form as the LM statistic based on the quasi-maximum likelihood estimator
given in Theorem 3.5 in the article by White (1982).

13For simplicity we do not spell out the standard regularity conditions required for Taylor expansions
to be valid, central limit theorems to hold, etc. As indicated in (39), the limiting distribution is valid for
r → ∞ as n → ∞. To bound the behavior of the test statistic as r → ∞, it is assumed that, for given
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1, 2, . . ., suppose lj = h+λj and Aj is invertible. For each j = 1, 2, . . ., suppose there exists

a nonstochastic matrix, Σj, such that n1/2Mj →d N(0(h+λj×1),Σj) and Var(Mj) →p Σj

as n → ∞ and such that the first h rows and columns of Σj consist of 0s and the lower

right λj × λj submatrix of Σj is positive definite. Then under the null the asymptotic

distribution of Sr as r → ∞ and n → ∞ is given in (39).

3.4 Same set of moment restrictions

The second case we consider is where the same set of moment restrictions and weight

matrix are used to calculate all LM statistics. That is, lj = l0 and Wj = W0 for all

j = 1, 2, . . .. This is the case usually considered in the literature on hypothesis testing in

IV and GMM settings (see e.g. Engle, 1984; Newey and McFadden, 1994). The 2SLS setup

in Section 2.2 provides an example. As in the previous subsection, define Mj = mj(δ̃0j)

and Aj = aj(δ̃0j). Using Assumption 1, we show in Appendix A.3 that Jj is an estimator

of Var(Dqj(δ̃0j))
−, where

Jj = (A′
jWrAj)

−1H ′
j

(
HjCjH

′
j

)−1
Hj(A

′
jWrAj)

−1, j = 1, 2, . . . , (44)

Cj = (A′
jWrAj)

−1A′
jWrBrWrAj(A

′
jWrAj)

−1, j = 1, 2, . . . , (45)

and Bj is defined in (40). The LM statistics simplify to14

Rj = M ′
rWrAjJjA

′
jWrMr, j = 1, 2, . . . , (46)

which is the same formula as (19) used in Section 2.2. The theorem below is the equivalent

of Theorem 1.

Theorem 2 Assumption 1 holds and regularity conditions are satisfied.15 For each j =

1, 2, . . ., suppose lj = l0 and Wj = W0. For each j = 1, 2, . . ., suppose there exists a non-

π > 1 and for every ε > 0, there is a positive integer j0 such that P
(
maxj0≤j≤r Rj/λj ≤ (π + 1)/2

)
< ε

for all sufficiently large n. Here π denotes the critical value used in the test.
14If an optimal weight matrix is used, so Wr and B−1

r are equivalent, then Rj in (46) is the same
as LM2n in Table 2 in the article by Newey and McFadden (1994). In this case Jj simplifies to Jj =
(A′

jWrAj)
−1H ′

j(Hj(A
′
jWrAj)

−1H ′
j)

−1Hj(A
′
jWrAj)

−1 for j = 1, 2, . . ..
15See footnote 13.
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stochastic matrix, Σj, such that n1/2Dqj(δ̃0j) →d N(0(h+λj×1),Σj) and Var(Dqj(δ̃0j)) →p

Σj as n → ∞ and such that the first h rows and columns of Σj consist of 0s and the lower

right λj × λj submatrix of Σj is positive definite. Then under the null the asymptotic

distribution of Sr as r → ∞ and n → ∞ is given in (39).

The proofs of the theorems are omitted, since they are similar to the proof of Theorem 3

by Aerts et al. (1999).

3.5 Remarks

We conclude this section with some remarks. First, because of the LM approach, param-

eter estimates need only be calculated once. In some applications, not having to estimate

the model under the alternative is an advantage. For example, it is often difficult to

estimate models when the first-order conditions are nonlinear in the parameters.

Second, note that essentially the same assumptions underpin both Theorem 1 and

Theorem 2. In practice, one therefore has a choice of whether to implement the test using

the minimum number of moment restrictions or using the same set of moment restrictions.

Third, the weighting of the LM statistics means that the ordering of the terms in

the series approximation matters for the numerical value of the GMM-ACH test statistic.

This issue also arises in nonparametric estimation based on series. The advice from that

literature is to ensure that “important terms” are at the beginning of the series (see e.g.

Gallant, 1981).

Fourth, a sequence of approximating functions with a multivariate argument (d > 1)

can be constructed by interacting d univariate bases (see e.g. Donald et al., 2003, p59;

Aerts et al., 2000, p413). To formalize this, associate with each j a d-tuple of nonnegative

integers (τj1, . . . , τjd) for j = 1, 2, . . .. Let e = (e1, . . . , ed)
′ ∈ R

d and define bj(ek) = 1 for

j = 0. Then define cj =
∏d

k=1 bτjk(ek) for j = 1, 2, . . .. For c1, c2, . . . to be a basis, it

is important that all possible d-tuples are included in the sequence. That is, given any

(τ1, . . . , τd) there is a j∗ such that cj∗ =
∏d

k=1 bτk(ek). The exception from this rule is

basis functions which are omitted because of collinearity with the null model.

Fifth, the ordering is particularly ambiguous in applications where γ is a function of a
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vector. Let Λj denote the set of d-tuples (τ1, . . . , τd) which correspond to the sequence of

basis functions c1, . . . , cλj
. Note that Λ1 ⊂ Λ2 ⊂ · · · by construction. Aerts et al. (2000)

proposed to use index sets in which each argument is treated symmetrically. That is, if

(τ1, . . . , τd) is in Λj then all permutations are also in Λj . Also, in order to preserve power,

they preferred sequences in which at most d! terms are added in each step. The desired

sequence can be constructed, for example, by sorting the indices first by their sum and

second by their maximum value; the Λjs are defined by selecting the subsequences which

satisfy the symmetry requirement.16

Sixth, the GMM-ACH test can be used as a test of overall misspecification of condi-

tional moment restrictions. Suppose for concreteness that vi consists of xi and zi, which

may have common elements, and that the null model is E
(
ρ(xi, β

∗)|zi
)
= 0, where β∗ is

an unknown parameter vector and ρ is a known vector-valued function. To test the null

against its negation, let d be the dimension of xi, p the dimension of zi, and take

Fj(vi, β, gj(·, θj)) =
(
ρ(xi, β) + gj(xi, θj)

)⊗ (
1, cz1(zi), . . . , c

z
lj−1(zi)

)′
, (47)

where 1, cz1, c
z
2, . . . is a sequence of basis functions (czk : Rp → R for k = 1, 2, . . .) such

that (47) with θj = 0(λj×1) is equivalent to the null model. Equivalence is not difficult

to achieve (see e.g. Bierens, 1982; Bierens, 1990; de Jong and Bierens, 1994; Bierens and

Ploberger, 1997; Stinchcombe and White, 1998; Donald et al., 2003; Escanciano, 2009).

If the basis functions are chosen appropriately, lj = h + λj , and the test is implemented

using the minimum number of moment conditions, consistency follows by an argument

parallel to that outlined for the simple IV model at the end of Section 2.1.17

Seventh, consistency of the GMM-ACH test in general can be proved using arguments

similar to those needed to prove Theorem 4 of Aerts et al. (1999), which concerns con-

sistency of a score-based test in likelihood models. We offer the following comments. As

mentioned in Section 2.1, when Aj is invertible then the LM statistic does not directly

16For d = 3 let P (τ1, τ2, τ3) denote the set of permutations of (τ1, τ2, τ3), then Λ1 = P (0, 0, 1) with
λ1 = 3, Λ2 = Λ1 ∪ P (0, 1, 1) with λ2 = 6, Λ3 = Λ2 ∪ P (0, 0, 2) with λ3 = 9, Λ4 = Λ3 ∪ (1, 1, 1) with
λ4 = 10, Λ5 = Λ4 ∪ P (0, 1, 2) with λ5 = 16, Λ6 = Λ5 ∪ P (0, 0, 3) with λ6 = 19, etc.

17Since gj drops out of the LM statistics when the minimum number of moment restrictions are used
(see Section 2.1), it does not matter in (47) that ρ is a vector while gj is a real function.
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depend on how the alternative model is specified. However, it depends indirectly on the

alternative through the moment restrictions used to identify the parameters of the al-

ternative model. When there are more moment restrictions than parameters under the

alternative, then Aj is not invertible and, in general, the LM statistic will depend directly

on the specification of the alternative model. By explicitly specifying an alternative model

and choosing moment restrictions accordingly, one can direct the power towards alterna-

tives of particular interest. We provide Monte Carlo evidence in support of this idea in

Section 4.3.

Eighth, when the same set of moment restrictions and the same weight matrix are

used under the null as well as under the parametric alternatives, then the estimator, with

0s appended as appropriate, computed by solving the unrestricted problem of minimizing

q0(δ0) with respect to δ0 is identical to the estimators obtained by solving the restricted

problem of minimizing qj(δj) with respect to δj subject to Hjδj = 0(λj×1) for j = 1, 2, . . ..

This can be seen from inspecting the first-order conditions.

Ninth, it is possible that there are other cases where Sr is asymptotically pivotal. A

key property of the LM statistics under Theorem 2 is that the first λj−1 components

of Dqj(δ̃0j) equal Dqj−1(δ̃0,j−1) for all j = 1, . . . , r. Mathematically, there are ways of

achieving this which do not require using the same set of moment restrictions for all

j = 0, 1, . . .. Examining the first-order conditions, (34), reveals that the key property is

also satisfied if the partial derivatives of the last lj − lj−1 components of the empirical

moment function with respect to the first λj−1 components of the parameter vector are

all 0 and the weight matrix is block-diagonal with 0s in the first lj−1 rows (columns) of

the last lj − lj−1 last columns (rows). The first requirement means that the additional

lj − lj−1 moment restrictions must not depend on the previous λj−1 parameters. If the

moment restrictions are constructed by multiplying instruments and “residuals”, then

the additional lj − lj−1 instruments must be orthogonal to the partial derivatives of the

residuals with respect to the previous λj−1 parameters.18 Thus, while it may be possible

to construct other LM-based GMM-ACH test statistics, the requirements are complicated

18If the weight matrix is constructed using the second moments of a set of instruments, then the
additional lj − lj−1 instruments must also be orthogonal to the previous λj−1 instruments.
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and seem less generalizable. Hence, we do not further pursue this possibility.

4 Examples and a second Monte Carlo study

In this section we consider single-equation linear models with endogenous right-hand side

variables. The first two subsections explain how the GMM-ACH test can be used to test

against misspecification in a specific direction. We consider a test against misspecification

with respect to a single regressor and with respect to a linear combination (an index) of

regressors. The potential gains from using a directed test instead of a test of overall

misspecification is explored in a second Monte Carlo study. The final subsection contains

an empirical application.

The setup is the following. Let yi be a scalar random variable as in Section 2, but

now let xi and zi be random vectors. Also, partition xi = (w1i, w
′
2i)

′ where w1i is scalar.

A constant may be included in xi and zi. Suppose the parametric model of interest is

yi = w1iβ
∗
1 + w′

2iβ
∗
2 + ui, E(ui|zi) = 0, β∗ ∈ R

h, (48)

where β∗ = (β∗
1 , β

∗
2
′)′ is an unknown parameter vector and ui is an unobserved random

variable. As before, assume that n independent observations are available.

Equations of this form arises often in economics. For example, let (48) represent an

Engel curve where yi is the share of total expenditure spent on certain items in household i,

w1i is the log of total expenditure (as an indicator of permanent income), w2i represents

household characteristics, and zi includes the variables in w2i as well as household income

as the instrument for total expenditure. Then this is the well-known Working-Leser

specification of the Engel curve relationship.

As another example, consider a simultaneous equation system representing demand

and supply of a certain good. Let yi be the log of the total (equilibrium) quantity of

the good traded in market i, let w1i be the log of the (equilibrium) price of the good, let

w2i represent the characteristics of buyers in market i, and let zi include the variables in

w2i as well as characteristics of suppliers. Then (48) represents the structural demand
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equation.

4.1 Nonlinear effect of a single regressor

The first alternative specification we consider allows for a nonlinear effect in w1i. In

the Engel curve example, the alternative model represents a nonlinear permanent income

effect. In the market demand example, the alternative model allows for a nonlinear price

elasticity. Formally, the nonparametric alternative model is

yi = w1iβ
∗
1 + w′

2iβ
∗
2 + γ∗(w1i) + ui, E(ui|zi) = 0, β∗ ∈ R

h, γ∗ ∈ Γ. (49)

The approximate alternative models are

yi = w1iβ
∗
1 + w′

2iβ
∗
2 + gj(w1i, θ

∗
j ) + uji, E(uji|zi) → 0 as j → ∞,

β∗ ∈ R
h, θ∗j ∈ R

j , j = 1, 2, . . . , (50)

where gj(e, θj) =
∑j

k=1 θjkbk(e) for j = 1, 2, . . . are the partial sums from the series ap-

proximations of γ and θ∗1, θ
∗
2, . . . are pseudo-true values as defined earlier. (For simplicity,

we have set λj = j.)

The main issue in applying the GMM-ACH test is to choose moment restrictions to

estimate β∗ under the null and to identify θ∗1, θ
∗
2, . . . under the alternative. There are

many potential restrictions to choose from in this model, since the conditional moment

restriction implies an infinite number of unconditional moment restrictions which can be

used for estimation and testing. In practice, under the null, the model is virtually always

estimated using the restrictions

E
(
zi(yi − w1iβ

∗
1 − w′

2iβ
∗
2)
)
= 0(l0×1), β∗ ∈ R

h, (51)

where l0 is the dimension of zi. Section 3 shows that there are two ways to proceed under

the alternative.

If the number of instruments is equal to the number of endogenous variables and
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the null model is exactly identified, it is natural to base the test on Theorem 1. Define

z0i = zi and zji = (zi, b1(z
1
i ), . . . , bj(z

1
i ))

′ for j = 1, 2, . . ., where z1i denotes one of the

instruments and b1, b2, . . . are the basis functions used in the series approximation (with

any linear term removed). If w1i is exogenous, the natural choice for z
1
i is w1i itself. If w1i

is endogenous, the natural choice is one of the variables excluded from xi.
19 The moment

restrictions are then

E
(
zji(yi − w1iβ

∗
1 − w′

2iβ
∗
2 − gj(w1i, θ

∗
j ))

) → 0(lj×1) as j → ∞,

β∗ ∈ R
h, θ∗j ∈ R

j , j = 1, 2, . . . , (52)

where the number of moment restrictions is lj = h+ j for j = 0, 1, . . ..

Define x0i = (w1i, w
′
2i)

′ and xji = (w1i, w
′
2i, b1(w1i), . . . , bj(w1i))

′ for j = 1, 2, . . .. For-

mally the matrices which are used in the LM statistics and the GMM-ACH test statistic

are exactly as given in (9)–(13) in Section 2.1, with the symbols xji and zji as defined

in the present section and with β̃ being the usual IV estimator. To base this test on

Theorem 2 instead of Theorem 1, simply use formulae (19)–(23) in Section 2.2.

If the null model is overidentified, it is most natural to base testing on Theorem 2.

In this case, the need to choose which moment restrictions to use to identify θ∗1, θ
∗
2, . . .

is perhaps even more apparent. At one extreme one can use a basis based on a single

variable as in the previous case. At the other extreme one can use a basis based on

all of the available instrumental variables. In the latter case, zri is redefined as zri =

(c1(zi), . . . , cλr(zi)), where c1, c2, . . . is a basis with a vector argument as in Section 3.1.

Which is better is likely to depend on the strength of the instruments in the particular

application. In either case, the test is calculated using formulae (19)–(23).

19It is possible to derive optimal instruments when the unconditional moment restrictions are based
on a conditional moment restriction, see e.g. Newey and McFadden (1994, Sections 5.3–5.4).
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4.2 Nonlinear effect of an index

The second alternative specification we consider allows for a nonlinear effect in the index

w′
2iβ

∗. Specifically,

yi = w1iβ
∗
1 + w′

2iβ
∗
2 + γ∗(w′

2iβ
∗) + ui, E(ui|zi) = 0, β∗ ∈ R

h, γ∗ ∈ Γ. (53)

In the Engel curve and the market demand examples, one might consider this alternative

in order to check the robustness of β̃1 to misspecification of the influence of household

characteristics or buyer characteristics.

The approximate alternative models are

yi = w1iβ
∗
1 + w′

2iβ
∗
2 + gj(w

′
2iβ

∗, θ∗j ) + uji, E(uji|zi) → 0 as j → ∞,

β∗ ∈ R
h, θ∗j ∈ R

j , j = 1, 2, . . . , (54)

where the partial sums g1, g2, . . . may be defined as in the previous subsection. Since

there are no obvious single candidate instruments for the index, Theorem 2 may be better

suited than Theorem 1.

Define x0i = (w1i, w
′
2i)

′ and xji = (w1i, w
′
2i, b1(w

′
2iβ̃), . . . , bj(w

′
2iβ̃))

′ for j = 1, 2, . . .. If a

power basis is used, then xji = (w1i, w
′
2i, (w

′
2iβ̃)

2, . . . , (w′
2iβ̃)

1+j)′, which shows a similarity

with the well-known RESET test for functional form. Let zji be one of vectors discussed

in Section 4.1. The test statistics based on Theorem 2 is given in (19).

Note that this test differs from the one discussed in the last paragraph of Section 4.1.

The instrument vector zri, the vector of empirical moments restrictions evaluated under

the null Mr, the weight matrix Wr, and the moment variance matrix Br are all the same,

but the matrix Aj is different because xji is different. When the same set of moment

restrictions is used throughout, the LM statistics are functions of reweighted empirical

moment restrictions. The reweighting is determined by the derivative of the moment

restrictions with respect to the parameters θj under the alternative (i.e. by Aj). Since the

alternative hypotheses are different here and in Section 4.1, the LM statistics are based
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on different reweightings of the (same) empirical moment restrictions. Intuitively, the

resulting tests are powerful against the particular alternative of interest.

4.3 Monte Carlo study with multiple regressors

In this section, we present simulation results for a linear model with two endogenous

regressors and two instruments. The purpose is to investigate the finite-sample properties

of the GMM-ACH in multiple regression and to investigate the value of prior knowledge

about restrictions on the alternative models.

It is clear that the dimension of the parameter in the approximating functions can

increase very quickly with j, even for moderate-sized d. The ability of the test to detect

smaller “high-frequency” deviations from the null is therefore decreasing in d. In some

applications, it may be possible to alleviate this problem by restricting the kind of alter-

natives considered, such as γs which are additive in its arguments (see Aerts et al., 2000,

for a discussion and simulation results). We report on two tests in this section. For the

first test, the alternative model is a function of the second regressor only, and for the

second test, the alternative model is a function of both regressors.

The data-generating process for the experiments presented in this section is

yi = β0 + β11x1i + β21x2i + β22x
2
2i + β23x

3
2i + ui, (55)

where (ui, x1i, x2i, z1i, z2i)
′ is jointly normally distributed with mean 0 and correlation

matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 σux σux 0 0

σux 1 0 σxz 0

σux 0 1 0 σxz

0 σxz 0 1 0

0 0 σxz 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(56)

Apart from introducing a second regressor and instrument, this design differs from the
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previous (see Section 2.3) by omitting the transformation of regressors and instruments to

the [0, 1] range. The values of the variance matrix are similar to those used in the previous

experiments (prior to transformation by Φ). Specifically, Var(ui) = 0.22, Var(x1i) = 1,

σxz = ρ and σux = η(1 − ρ2)1/2 with the same values of ρ and η as before.20 The values

of the βs are given in the table of results.

We consider eight different versions of the GMM-ACH test. Most importantly, we

consider tests where the alternative is misspecification with respect to x2i only and tests

where the alternative is misspecification with respect to both x1i and x2i. The null model

is correctly specified with respect to x1i in all cases, so the former test is expected to have

higher power due to the conservation of degrees of freedom. As in Section 2.3, we also

consider both the version of the test which uses a minimum set of moment restrictions

and the version which uses the same set of moment restrictions, and we consider both a

power basis and a Fourier flexible form basis.

The results are shown in Table 2. Technical details of the implementation are given in

the table notes. The five panels correspond to different assumptions about the null and

the data-generating process. In the first two panels, the null is true. The level control is

good, although in the some (quadratic) cases a bit low for the test which tests against

misspecification with respect to x2i only. The next three panels show the power of the

test. The power is 100% or near 100% in all cases for the test against misspecification with

respect to x2i only. The power of the test against misspecification with respect to both

x1i and x2i is 100% or near 100% when the null is linear and the data-generating process

is quadratic, but fall dramatically in the simulations where the data-generating process

is cubic. The power of the test which uses the minimum number of moment restrictions

is never higher and in many cases lower than the power of test which uses the same set

of moment restrictions in all calculations. There is no clear pattern when comparing the

results for the tests based on the power basis and the Fourier flexible form basis.

20The combinations of (ρ, η, σux) are (0.7,0.1,0.07), (0.8,0.1,0.06) and (0.8,0.5,0.30).
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4.4 Empirical example

In this subsection, we apply the GMM-ACH test to the Engel curve model described

earlier. We use the same data as Blundell et al. (1998); BDP henceforth.21 The data

come from the 1980–1982 British Family Expenditure Survey. The extract is limited

to married or cohabiting couples with one or two children, living in Greater London or

south-east England, where the head of the household is currently employed. For further

details about the sample, including summary statistics, please see BDP’s article.

One of the models considered by BDP has the form (48). In our notation, yi is the

share of total expenditure spent on certain items, w1i is log of total expenditure, w2i is

a dummy for having two instead of one child in the family, and zi includes w2i as well

as total disposable income. The alternative specification is given in (49). (Since w2i is a

dummy, the alternative given in (53) is not relevant.)

Table 3 shows estimation results using different parametric specifications and different

estimation methods. The OLS estimates are similar to those reported in Tables II-VII

by BDP, although not identical. The GMM-ACH tests reject the linear specification for

fuel, transport and (marginally) for other goods. To help understand the outcome of

the GMM-ACH tests, the last panel of Table 3 shows IV estimates for a model which is

quadratic in the log of total expenditure. The statistical significance of the t-statistics

for the coefficients on the squared terms agree with the GMM-ACH tests in all cases (the

marginal case of other goods is only significant at the 5.7% level).

BDP also tested the linear model against a nonparametric alternative. Their approach

is much more complicated than ours and involves estimating the model under the non-

parametric alternative, a notoriously difficult problem. Their conclusions are different

from ours. They rejected the linear specification for alcohol and other goods and no other

categories. While the differences in conclusions are interesting, further investigation is

beyond the scope of the present paper.

21These data are available from the Journal of Applied Econometrics’ data archive.
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5 Concluding remarks

Inspired by Aerts et al. (1999), we suggest an GMM-ACH specification test of a parametric

function against a nonparametric alternative. The test is developed for models which are

identified by moment restrictions. The test requires only estimation under the null, and

hence nonparametric estimation is not involved. The GMM-ACH test is asymptotically

pivotal, which makes it easy to obtain critical values.

In a small Monte Carlo study, the GMM-ACH test has good level and power properties

compared to existing tests. The test developed by Horowitz (2006) tends to have the best

power of all, but it is difficult to perform. The GMM-ACH test has power that is close

to that of Horowitz’s test, and it is easy to carry out. The simulations also show that

the GMM-ACH test has substantially higher power than an LM test of the null against a

single, high-order parametric alternative. Hence, the idea of combination of test statistics

against a sequence of parametric alternatives proves to be valuable.

Originally, our interest in testing for functional form in GMM settings was motivated

by dynamic panel data models with fixed effects. This particular application is relatively

complex, partly because these models have several equations per subject and each equation

has its own set of instruments, and partly because GMM estimation of these models in

practice is often troubled by weak instruments. We intend to publish our results for this

case separately.

A Estimating the variance of the GMM gradient

In this appendix, we derive the estimators of Var(Dqj(δ̃0j))
− given in Section 3. Sec-

tion A.1 shows that Var(Dqj(δ̃0j)) can be estimated consistently. Section A.2 shows that

the LM statistic (37) simplifies to (43) in the case where lj = h + λj for all j = 1, 2, . . ..

Section A.3 establishes (44) for the case where lj = l0 for all j = 1, 2, . . .. Throughout

this appendix j is a fixed integer.

Our arguments in Section A.1 are similar to those given by Newey and McFadden

(1994, Section 9). The main differences are that we consider the case where the restricted
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estimator may be based on a subset of the moment restrictions and where the weight

matrix, Wj, is arbitrary. Newey and McFadden considered the case where the moment

restrictions are identical under the null and the alternative and where Wj is an estimate

of the optimal weight matrix.

A.1 The general case

In this section, we show that Var(Dqj(δ̃0j)), which appears in (37) in Section 3, can be

estimated as

Var(Dqj(δ̃0j)) = TjBjT
′
j , j = 0, 1, . . . , (57)

where Bj is given in (40) and Tj are the matrices defined by

Tj = A′
jWj

[
I(lj) − AjN1j

(
A′

0W0A0

)−1
A′

0W0N2j

]
, j = 0, 1, . . . , (58)

with

N1j =

⎡
⎢⎣ I(h)

0(λj×h)

⎤
⎥⎦ , j = 0, 1, . . . , (59)

and

N2j =

[
I(l0) 0(l0×lj−l0)

]
, j = 0, 1, . . . . (60)

We use two key properties of the testing problem set up in Section 3, namely that the

restricted estimator is δ̃0j = (δ̃′0, 0
′
(λj×1))

′ where δ̃0 is the solution to the unrestricted

minimization problem Dq0(δ̃0) = 0(h×1), and that the first l0 components of mj(δ̃0j) equal

m0(δ̃0). These properties are implied by Assumption 1.

In general, the GMM gradient evaluated at the unrestricted estimator is identically

equal to 0(h+λj×1). However, this is not the case when evaluated at the restricted estimator.
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A Taylor series expansion of mj(δ̃0j) around the “pseudo-true” value, δ∗j , implies

n1/2Dqj(δ̃0j) = aj(δ̃0j)
′Wj

[
n1/2mj(δ

∗
j ) + aj(δ̃0j)n

1/2(δ̃0j − δ∗j )
]
+ op(1), (61)

where Dqj , mj and aj are defined in (32), (33) and (35) and Wj is a given weight matrix.

Under standard regularity conditions, aj(δ̃0j) and Wj converge in probability to matrices

of (finite) constants. Therefore the main sources of variation for n1/2Dqj(δ̃0j) are the

empirical moments, n1/2mj(δ
∗
j ), and the estimated parameters, n1/2(δ̃0j − δ∗j ).

In the present context, the restricted estimator has the form δ̃0j = (δ̃′0, 0
′
(λj×1))

′, where

δ̃0 is the solution to the (unrestricted) estimation problem, Dq0(δ̃0) = 0(h×1). Under the

null, the “pseudo-true” value can be similarly partitioned, δ∗j = (δ∗0
′, 0′(λj×1))

′. To derive

the distribution of n1/2(δ̃0− δ∗0), note that a Taylor series expansion similar to (61) yields

n1/2Dq0(δ̃0) = a0(δ̃0)
′W0

[
n1/2m0(δ

∗
0) + a0(δ̃0)n

1/2(δ̃0 − δ∗0)
]
+ op(1). (62)

Since Dq0(δ̃0) = 0(h×1), it follows that

n1/2(δ̃0 − δ∗0) = −(
a0(δ̃0)

′W0a0(δ̃0)
)−1

a0(δ̃0)
′W0n

1/2m0(δ
∗
0) + op(1). (63)

An approximation for n1/2(δ̃0j − δ∗j ) follows by appending rows of zeros. With N1j as

defined in (59), n1/2(δ̃0j−δ∗j ) = N1jn
1/2(δ̃0−δ∗0). Before inserting into (61), it is convenient

to express m0(δ
∗
0) in terms of mj(δ

∗
j ). This will facilitate keeping track of the covariance

between the empirical moments and the estimated parameters in (61). By construction,

estimation under the null is based on the first l0 moment restrictions out of a total of

lj restrictions under alternative j. This means that if δ0j = (δ′0, 0
′
(λj×1))

′, then m0(δ0) =

N2jmj(δ0j), where N2j is defined in (60). It follows that

n1/2(δ̃0j − δ∗j ) = −N1j

(
a0(δ̃0)

′W0a0(δ̃0)
)−1

a0(δ̃0)
′W0N2jn

1/2mj(δ
∗
j ) + op(1). (64)
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Inserting (64) into (61) then gives

n1/2Dqj(δ̃0j) = Tjn
1/2mj(δ

∗
j ) + op(1), (65)

where Tj is defined in (58).

A central limit theorem implies n1/2mj(δ
∗
j ) →d N(0(h+λj×1),Ωj), where Ωj is defined by

Ωj = E
(
fj(vi, δ

∗
j )fj(vi, δ

∗
j )

′) and fj is defined in Section 3. It follows that the asymptotic

variance of Dqj(δ̃0j) can be estimated by TjΩjT
′
j . Replacing Ωj with the estimator Bj

defined in (40) yields (57).

A.2 The case of lj = h+ λj

This section shows that the LM statistic (37) with variance estimator (57) simplifies to

(43) in the case where lj = h+λj, Aj is invertible and its upper left submatrix is A0, and

Wj is any nonsingular matrix.

When Aj and Wj are invertible, the LM statistic simplifies to

Rj = M ′
jWjAj

(
TjBjT

′
j

)−
A′

jWjMj

= M ′
j

(
UjBjU

′
j

)−
Mj ,

(66)

where

Uj = I(lj) − AjN1jA
−1
0 N2j . (67)

Partition Aj and A−1
j as

Aj =

⎡
⎢⎣A00 A0j

Aj0 Ajj

⎤
⎥⎦ and A−1

j =

⎡
⎢⎣A

00 A0j

Aj0 Ajj

⎤
⎥⎦ , (68)

where A00 and A00 are h-dimensional and Ajj and Ajj are λj-dimensional square matrices.

Assumption 1 implies that A00 = A0. (Generally A00 �= A−1
0 .) Using this result, Uj can
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be written

Uj =

⎡
⎢⎣ 0(h×h) 0(h×λj)

−Aj0A
−1
00 I(λj )

⎤
⎥⎦ . (69)

Partition Bj similarly to Aj. Then

UjBjU
′
j =

⎡
⎢⎣ 0(h×h) 0(h×λj)

0(λj×h) Kj

⎤
⎥⎦ , (70)

where Kj is defined as

Kj = Aj0A
−1
00 B00(A

−1
00 )

′A′
j0 − Bj0(A

−1
00 )

′A′
j0 − Aj0A

−1
00 B

′
j0 +Bjj. (71)

Partition Mj as

Mj =

⎡
⎢⎣M0

M�j

⎤
⎥⎦ , (72)

where M0 = 0(h×1) by the definition of the IV estimator and M�j is a λj-vector. Since Kj

is nonsingular, then

Rj = M ′
�jK

−1
j M�j . (73)

Rules for inverting partitioned matrices imply that Aj0A
−1
00 = (Ajj)−1Aj0. Substituting

this into (71) and rearranging yield

Kj = (Ajj)−1Aj0B00(A
j0)′(Ajj)−1′ − Bj0(A

j0)′(Ajj)−1′ − (Ajj)−1Aj0B0j +Bjj

= (Ajj)−1
(
Aj0B00(A

j0)′ − AjjBj0(A
j0)′ −Aj0B0j(A

jj)′ + AjjBjj(A
jj)′

)
(Ajj)−1′.

(74)

Recall that Hj = [0(λj×h) I(λj )]. From the last line in the previous expression it follows
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that

Kj = (Ajj)−1HjA
−1
j Bj(A

−1
j )′H ′

j(A
jj)−1′. (75)

Finally, noting that HjA
−1
j Mj = AjjM�j yields

Rj = M ′
�j

(
(Ajj)−1HjA

−1
j Bj(A

−1
j )′H ′

j(A
jj)−1)′

)−1
M�j

= M ′
�j(A

jj)′
(
HjA

−1
j Bj(A

−1
j )′H ′

j

)−1
AjjM�j

= M ′
j(A

−1
j )′H ′

j

(
HjA

−1
j Bj(A

−1
j )′H ′

j

)−1
HjA

−1
j Mj .

(76)

The last line is identical to (43).

A.3 The case of lj = l0

As noted by e.g. Engle (1984, p795), the form of LM statistics simplifies when the

same set of moment restrictions is used both under the null and under the alterna-

tive; that is, when l0 = lj and W0 = Wj . Define Ej = A′
jWjAj and Gj = I(h+λj) −

E
−1/2
j H ′

j(HjE
−1
j H ′

j)
−1HjE

−1/2
j . Assumption 1 implies that the first h columns of Aj equal

A0. Using this fact and formulae for inverting partitioned matrices, it can be verified that

N1j

(
A′

0W0A0

)−1
A′

0W0N2j = E
−1/2
j GjE

−1/2
j A′

jWj. (77)

This result can be used to simplify the expression for Tj in (58),

Tj = A′
jWj

[
I(lj) −AjE

−1/2
j GjE

−1/2
j A′

jWj

]

=
[
I(h+λj) − A′

jWjAjE
−1/2
j GjE

−1/2
j

]
A′

jWj

=
[
I(h+λj) − E

1/2
j GjE

−1/2
j

]
A′

jWj

=
[
I(h+λj) −

(
I(h+λj) −H ′

j(HjE
−1
j H ′

j)
−1HjE

−1
j

)]
A′

jWj

= H ′
j(HjE

−1
j H ′

j)
−1HjE

−1
j A′

jWj .

(78)
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It follows that TjBjT
′
j simplifies to

TjBjT
′
j = H ′

j(HjE
−1
j H ′

j)
−1HjE

−1
j A′

jWjBjWjAjE
−1
j H ′

j(HjE
−1
j H ′

j)
−1Hj . (79)

Using the definition of a generalized inverse, it is straightforward to verify that the expres-

sion E−1
j H ′

j

(
HjE

−1
j A′

jWjBjWjAjE
−1
j H ′

j

)−1
HjE

−1
j is a generalized inverse of TjBjT

′
j . The

resulting estimator of Var(Dqj(δ̃0j)) is Jj given in (44). The corresponding LM statistic

is given in (46).
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Table 1: Monte Carlo results for simple IV model (nominal size 5%)

ρ η HOR t DIN ACH Min ACH Same LM Min LM Same
P F P F P F P F

Null is true

Null: linear; DGP: yi = 0.5xi + ui

0.8 0.1 5.1 5.2 4.8 5.2 5.2 5.6 5.0 4.1 4.2 4.2 4.2
0.8 0.5 3.0 3.4 4.3 4.1 3.4 3.5 3.1 3.6 5.6 3.7 5.8
0.7 0.1 4.9 5.2 4.5 5.1 5.2 5.4 4.6 4.3 4.1 4.3 4.1

Null: quadratic; DGP: yi = 0.5xi − 0.5x2
i + ui

0.8 0.1 5.3 4.0 4.8 5.0 4.3 5.1 4.2 4.4 4.1 4.5 4.2
0.8 0.5 4.6 7.7 5.0 7.5 3.4 3.8 2.0 5.7 5.7 7.2 6.1
0.7 0.1 5.6 3.6 4.3 5.6 4.3 5.4 4.5 4.5 4.2 4.9 4.3

Null is false

Null: linear; DGP: yi = 0.5xi − 0.5x2
i + ui

0.8 0.1 65.8 71.4 44.7 69.2 69.8 71.1 70.0 39.3 39.3 39.7 39.4
0.8 0.5 72.1 82.7 45.9 78.4 78.2 81.0 79.1 49.9 50.3 50.2 50.4
0.7 0.1 42.1 44.4 25.9 42.1 42.7 45.2 46.9 22.8 22.1 22.8 22.3

Null: linear; DGP: yi = 0.5xi − x2
i + x3

i + ui

0.8 0.1 68.4 67.1 49.8 64.0 62.7 65.1 64.1 40.3 39.0 40.4 39.0
0.8 0.5 66.3 58.0 48.0 56.6 52.6 55.6 54.5 30.7 34.1 32.0 35.4
0.7 0.1 42.4 41.2 26.2 36.2 36.1 38.3 37.9 17.8 17.1 18.4 16.8

Null: quadratic; DGP: yi = 0.5xi − x2
i + 4x3

i + ui

0.8 0.1 89.0 90.0 72.2 86.8 56.8 93.4 74.8 68.3 65.0 69.1 65.8
0.8 0.5 97.2 98.7 68.5 98.0 82.3 97.7 80.4 83.8 78.0 85.3 79.3
0.7 0.1 52.7 59.0 29.8 49.1 18.2 67.1 34.8 27.6 25.9 29.5 27.2

Legend: HOR: test by Horowitz (2006); t: ordinary t test for adding one additional term to the null model;
DIN: the IV test by Donald, Imbens, and Newey (2003); ACH Min: implemented as in Section 2.1; ACH
Same: implemented as in Section 2.2; LM Min: the rth LM statistic from the ACH Min calculations; LM
Same: the rth LM statistic from the ACH Same calculations; P: based on power basis; F: based on Fourier
flexible form basis; null linear: yi = β0 + β1xi + ui; null quadratic: yi = β0 + β1xi + β2x

2
i + ui. Notes: HOR,

t and DIN quoted from Horowitz (2006). There are 500 observations in each sample and 1000 samples per
experiment. In the calculations of the GMM-ACH tests, r = 6 and all additional terms under the alternative
are orthogonalized to reduce multicollinearity. For the last set of experiments, the dgp process is incorrectly
stated in Horowitz’s article with the term 2x3i instead of 4x3i .
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Table 2: Monte Carlo results for multi-regressor IV model (nominal size 5%)

Testing against mis- Testing against mis-
specification wrt x2i only specification wrt (x1i, x2i)

σxz σxu ACH Min ACH Same ACH Min ACH Same
P F P F P F P F

Null is true

Null: linear; DGP: yi = 0.5x1i + 0.5x2i + ui

0.7 0.07 4.9 4.9 4.8 4.6 4.8 4.8 4.1 4.8
0.8 0.06 4.6 4.8 4.4 4.5 5.7 5.7 5.7 5.0
0.8 0.30 5.2 5.0 4.5 4.0 5.6 5.6 5.5 5.2

Null: quadratic; DGP: yi = 0.5x1i + 0.5x2i − 0.5x2
2i + ui

0.7 0.07 3.6 4.4 5.0 4.1 5.0 5.0 5.2 4.7
0.8 0.06 3.8 4.2 3.3 3.0 6.1 6.1 5.6 5.2
0.8 0.30 3.5 3.4 4.5 3.5 5.4 5.4 5.6 5.4

Null is false

Null: linear; DGP: yi = 0.5x1i + 0.5x2i − 0.5x2
2i + ui

0.7 0.07 100.0 100.0 100.0 100.0 98.3 99.1 97.2 99.1
0.8 0.06 100.0 100.0 100.0 100.0 99.9 100.0 99.6 100.0
0.8 0.30 100.0 100.0 100.0 100.0 99.9 100.0 99.7 100.0

Null: linear; DGP: yi = 0.5x1i + 0.5x2i − x2
2i + x3

2i + ui

0.7 0.07 91.6 93.1 92.2 94.5 19.7 22.2 19.6 24.8
0.8 0.06 99.9 100.0 99.9 100.0 33.2 51.4 34.8 52.3
0.8 0.30 99.9 100.0 99.9 100.0 33.7 49.3 35.4 50.6

Null: quadratic; DGP: yi = 0.5x1i + 0.5x2i − x2
2i + 4x3

2i + ui

0.7 0.07 90.8 73.8 90.7 79.1 6.4 5.1 11.4 5.9
0.8 0.06 100.0 99.8 100.0 99.8 16.2 5.1 22.0 6.1
0.8 0.30 100.0 99.7 99.9 99.8 17.1 6.8 20.5 6.5

Legend: ACH Min: implemented using minimum number of moment restrictions; ACH Same:
implemented using same set of moment restrictions; P: based on power basis; F: based on
Fourier flexible form basis; null linear: yi = β0 + β11x1i + β21x2i + ui; null quadratic: yi =
β0 + β11x1i + β21x2i + β22x

2
2i + ui; wrt: with respect to. Notes: There are 500 observations

in each sample and 1000 samples per experiment. In the calculations of the GMM-ACH tests,
r = 6, the ordering of basis functions is as described in Section 3.5, and no orthogonalization
is carried out.
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Table 3: Engel curve estimates

Share of total expenditures
Food Fuel Clothes Alcohol Transport Other

Summary statistics for dependent variable
Mean .3565 .0910 .1072 .0606 .1324 .2523

Simple linear model, OLS estimates

β̃1 −.1338∗ −.0472∗ .0813∗ .0198∗ .0394∗ .0406∗

(.0060) (.0032) (.0059) (.0041) (.0069) (.0067)

Linear model with demographics, OLS estimates

β̃1 −.1384∗ −.0474∗ .0819∗ .0216∗ .0411∗ .0412∗

(.0060) (.0032) (.0059) (.0042) (.0069) (.0068)

β̃2 .0338∗ .0012 −.0045 −.0129∗ −.0130∗ −.0047
(.0048) (.0026) (.0047) (.0033) (.0055) (.0054)

Linear model with demographics, IV estimates

β̃1 −.1412∗ −.0274∗ .0473∗ .0156 .0295∗ .0762∗

(.0122) (.0067) (.0123) (.0085) (.0142) (.0140)

β̃2 .0341∗ −.0005 −.0015 −.0124∗ −.0119∗ −.0077
(.0048) (.0026) (.0049) (.0034) (.0056) (.0055)

GMM-ACH test of the linear model with demographics
ACH Min 0.719 6.556∗ 2.145 0.530 14.268∗ 3.950
ACH Same 1.200 15.594∗ 1.013 0.531 16.243∗ 5.033∗

Quadratic model with demographics, IV estimates

β̃1 −.0618 −2.1008∗ .9794 −.0855 2.7383∗ −1.4708
(.6782) (.5065) (.6938) (.4740) (.9295) (.8135)

β̃2 .0336∗ .0112∗ −.0068 −.0119∗ −.0273∗ .0011
(.0063) (.0047) (.0064) (.0044) (.0086) (.0075)

β̃3 (w2
1i) −.0086 .2256∗ −.1014 .0110 −.2947∗ .1683

(.0736) (.0549) (.0752) (.0514) (.1008) (.0882)

Legend: β̃1: coefficient on log total expenditure; β̃2: coefficient on indicator of two children; β̃3:
coefficient on the square of log total expenditure; ACH Min: implemented using the minimum
number of moment restrictions; ACH Same: implemented using the same set of moment restrictions;
standard errors in ( ) parentheses; ∗: statistical significance at the 5% level. Notes: Constant
included in all models, but not reported. GMM-ACH tests based on a power basis, r = 6, and all
additional terms under the alternative are orthogonalized to reduce multicollinearity. Data from
Blundell, Duncan, and Pendakur (1998). Number of observations: 1519.


