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TESTING AFFILIATION IN PRIVATE-VALUES MODELS OF FIRST-PRIC E AUCTIONS
USING GRID DISTRIBUTIONS

BY LUCIANO I. DE CASTRO AND HARRY J. PAARSCH

University of Illinois at Urbana-Champaign
University of Melbourne

Within the private-values paradigm, we construct a tractable empirical model of
equilibrium behaviour at first-price auctions when bidders’ valuations are potentially
dependent, but not necessarily affiliated. We develop a testof affiliation and apply
our framework to data from low-price, sealed-bid auctions held by the Department of
Transportation in the State of Michigan to procure road-resurfacing services: we do not
reject the hypothesis of affiliation in cost signals.

1. Motivation and Introduction. During the past half century, economists have made considerable
progress in understanding the theoretical structure of equilibrium strategic behaviour under market mecha-
nisms, such as auctions, when the number of potential participants is relatively small; seeKrishna[2010] for
a comprehensive presentation and evaluation of progress.

One analytic device, commonly used to describe bidder motivation at single-object auctions, is a con-
tinuous random variable which represents individual-specific heterogeneity in valuations. The conceptual
experiment involves each potential bidder’s receiving a draw from a distribution of valuations. Conditional
on his draw, a bidder is then assumed to act purposefully, maximizing either the expected profit or the ex-
pected utility of profit from winning the auction. Another frequently-made assumption is that the valuation
draws of bidders are independent and that the bidders areex antesymmetric—their draws being from the
same distribution of valuations. This framework is often referred to as thesymmetric independent private-
values paradigm(symmetric IPVP). Under these assumptions, a researcher can then focus on a representative
agent’s decision rule when describing equilibrium behaviour.

At many real-world auctions, the latent valuations of potential bidders are probably dependent in some
way. In auction theory, it has been assumed that dependence satisfiesaffiliation, a term coined byMilgrom and Weber
[1982]. Affiliation is a condition concerning the joint distribution of signals. Often, affiliation is described
using the intuition presented by Milgrom and Weber: “roughly, this [affiliation] means that a high value of
one bidder’s estimate makes high values of the others’ estimates more likely.” Thus described, affiliation
seems like a relatively innocuous condition. In the case of continuous random variables, following the path
blazed byKarlin [1968], some refer to affiliation asmultivariate total positivity of order two, or MTP2 for
short. Essentially, under affiliation, with continuous random variables, the off-diagonal elements of the Hes-
sian of the logarithm of the joint probability density function of signals are all non-negative; i.e., the joint
probability density function is log-supermodular. Under joint normality of signals, affiliation requires that
all the pair-wise covariances be weakly positive.

How is affiliation related to other forms of dependence? Consider two continuous random variablesV1

andV2, having joint probability density functionfV1,V2(v1,v2) as well as conditional probability density
functions fV2|V1

(v2|v1) and fV1|V2
(v1|v2) and conditional cumulative distribution functionsFV2|V1

(v2|v1) and
FV1|V2

(v1|v2). Introduceg(·) andh(·), functions that are nondecreasing in their arguments.de Castro[2007]
has noted that affiliation implies a)[FV2|V1

(v2|v1)/ fV2|V1
(v2|v1)] is decreasing inv1 (andv2 in the other case),
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2 L.I. DE CASTRO AND H.J. PAARSCH

often referred to as a decreasinginverse hazard rate, which implies b) Pr(V2 ≤ v2|V1 = v1) is nonincreasing
in v1 (andv2 in the other case), also referred to aspositive regression dependence, which implies c) Pr(V2 ≤
v2|V1 ≤ v1) is nonincreasing inv1 (andv2 in the other case), also referred to asleft-tail decreasingin v1

(v2), which implies d) cov[g(V1,V2),h(V1,V2)] is positive, which implies that e) cov[g(V1),h(V2)] is positive,
which implies f) cov(V1,V2) is positive. The important point to note is that affiliation is a much stronger
form of dependence than positive covariance. In addition,de Castro[2007] has demonstrated that, within
the set of all signal distributions, the set satisfying affiliation is small, both in the topological sense and in
the measure-theoretic sense.

Affiliation delivers several predictions and results: first, under affiliation, the existence and uniqueness of a
monotone pure-strategy equilibrium (MPSE) is guaranteed.Also, four commonly-studied auction formats—
the oral, ascending-price (often referred to by economistsas theEnglish) and the second-price, sealed-bid
(often referred to by economists as theVickrey) as well as two first-price ones—can be ranked in terms of the
revenues they can be expected to generate. Specifically, theexpected revenues at English auctions are weakly
greater than those at Vickrey auctions which are greater than those at first-price auctions—either the sealed-
bid or the oral, descending-price (often referred to by economists as theDutch) formats. Note, however,
that when bidders are asymmetric, their valuation draws being from different marginal distributions, these
rankings no longer apply. In fact, in general, very little can be said about the revenue-generating properties
of the various auction formats and pricing rules under asymmetries.

Investigating equilibrium behaviour at auctions, empirically, when latent valuations are affiliated, has
challenged researchers for some time.Laffont and Vuong[1996] showed that identification has been im-
possible to establish in many models when affiliation is present. In fact, Laffont and Vuong demonstrated
that any model within the affiliated-values paradigm (AVP) is observationally equivalent to a model within
the affiliated private-values paradigm (APVP). For this reason, virtually all empirical workers who have
considered some form of dependence have worked within the APVP.

Only a few researchers have dealt explicitly with models within the APVP. In particular,Li et al. [2000]
have demonstrated nonparametric identification within theconditional IPVP, a special case of the APVP,
while Li et al. [2002] have demonstrated nonparametric identification within the APVP. One of the problems
that Li et al. faced when implementing their approach is thatnonparametric kernel-smoothed estimators are
often slow to converge. In addition, Li et al. do not impose affiliation in their estimation strategy, so the first-
order condition used in their two-step estimation strategyneed not constitute an equilibrium.Hubbard et al.
[2009] have sought to address some of these technical problems using semiparametric methods which sacri-
fice the full generality of the nonparametric approachin lieu of additional structure.

To date, except forBrendstrup and Paarsch[2007], no one has attempted to examine, empirically, models
in which the private values are potentially dependent, but not necessarily affiliated. Incidentally, using data
from sequential English auctions of two different objects,Brendstrup and Paarsch found weak evidence
against affiliation in the valuation draws of two objects forthe same bidder.

de Castro[2007] has noted that, within the private-values paradigm, affiliation is unnecessary to guarantee
the existence and uniqueness of a MPSE. In fact, he has demonstrated existence and uniqueness of a MPSE
under a weaker form of dependence, one where the inverse hazard rate is decreasing in the conditioned
argument.

Because affiliation is unnecessary to guarantee existence and uniqueness of bidding strategies in mod-
els of first-price auctions with private values, expected revenue predictions based on empirical models in
which affiliation is imposed are potentially biased. Knowing whether valuations are affiliated is central
to ranking auction formats in terms of the expected revenuesgenerated. In the absence of affiliation, the
expected-revenue rankings delivered by thelinkage principleof Milgrom and Weber[1982] need not hold:
the expected-revenue rankings across auctions formats remain an empirical question. Thus, investigating the
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empirical validity of affiliation appears both an importantand a useful exercise.
In next section of this paper, we present a brief descriptionof affiliation and its soldier—total positivity

of order two (TP2). Subsequently, following the theoretical work ofde Castro[2007, 2008], who introduced
the notion of the grid distribution, in section 3 we construct a tractable empirical model of equilibrium
behaviour at first-price auctions when the private valuations of bidders are potentially dependent, but not
necessarily affiliated.1 In section 4, we develop a test of affiliation, which is based on grid distributions,
rather than kernel-smoothing methods, thus avoiding the drawback encountered byLi et al. [2000, 2002],
while in section 5, we conduct a small-scale Monte Carlo to investigate the numerical as well as small-
sample properties of our proposed test. In section 6, we apply our methods in an empirical investigation of
low-price, sealed-bid, procurement-contract auctions held by the Department of Transportation in the State
of Michigan, and do not reject the null hypothesis of affiliation.

This information is potentially useful to a policy maker. The apparent high degree of estimated affiliation
also explains why low levels of observed competition are often sufficient to maintain relatively low profit
margins: strong affiliation is akin to fierce competition. Under strong affiliation, a potential winner knows
that his nearest competitor probably has a valuation (cost)close to his, and this disciplines his bidding
behaviour: he becomes more aggressive than under independence. We summarize and conclude in section 7,
the final section of the paper.

2. Affiliation and TP 2. As mentioned above, affiliation is often described using an example with two
random variables that can take on either a low or an high value. The two random variables are affiliated if
high (low) values of each are more likely to occur than high and low or low and high values. A commonly-
used graph of the four possible outcomes in a two-bidder auction game with two values is depicted in figure
1. The(1,1) and(2,2) points are more likely than the(2,1) or (1,2) points. Lettingpi j denote the probability
of (i, j), affiliation in this example then reduces to TP2—viz.,

p11p22 ≥ p12p21.

Put another way, TP2 means that the determinant of the matrix

P =

(
p11 p12

p21 p22

)

must be weakly positive. Independence in valuations obviously satisfies the lower bound on this determi-
nental inequality. Note, too, that affiliation restricts distributions to a part of the simplex depicted in figure
2. In that figure, it is the region of the simplex that appears below a semi-circle rising from the line where
p11+ p22 equals one. In order to draw this figure, we needed to impose symmetry, sop12 andp21 are equal;
thus, the intercept forp12 is one half. Conditions that are weaker than affiliation, butthat also guarantee
existence and uniqueness of equilibrium, are depicted in figure 2, too. In fact, in this simple example, the
entire simplex satisfies these weaker conditions. In richerexamples, however, it is a subset of the simplex,
but one that contains the set of affiliated distributions. Thus, the assumption of affiliation could be important
in determining the revenues a seller can expect from a particular auction format.

Slavkovíc and Fienberg[2009] have discussed geometric representations of 2×2 distributions, like some
of those considered here. Their representations are based on tetrahedrons, while ours reduce to triangles
because of symmetry.

1The grid distributions discussed and used in this paper can also be modelled as contingency tables, which have been used ex-
tensively in applications in the social sciences; seeDouglas et al.[1990] for the connections between contingency tables and positive
dependence properties, including affiliation (TP2), which is the focus of this paper.
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FIG 3. Affiliation with Two Bidders and Three Values for Signals

Another important point to note is that affiliation is a global restriction. To see the importance of this
fact, introduce the valuation 3 for each bidder; five additional points then appear, as is depicted in figure
3. Affiliation requires that the probabilities at all collections of four points satisfy TP2; i.e., the following
additional six inequalities must hold:

p12p23 ≥ p13p22, p22p33 ≥ p23p32, p21p32 ≥ p22p31,

p11p33 ≥ p13p31, p12p33 ≥ p13p32, andp21p33 ≥ p23p31.

Of course, symmetry would imply thatpi j equalp ji for all i and j, so the joint mass function for two bidders
and three valuations under symmetric affiliation can be written as the following matrix:

P =





p11 p12 p13

p21 p22 p23

p31 p32 p33



 =





a d e
d b f
e f c





where the determinants of all(2×2) submatrices must be positive. Note, too, that all the pointsmust also
live on the simplex, so

0≤ a,b,c,d,e, f < 1 anda+b+c+2d+2e+2 f = 1.

How many inequalities are relevant? Let us represent the above matrix in the following tableau:

1 2 3

1 a d e

2 d b f

3 e f c
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where the row and column numbers will be used later to define TP2 inequalities. There are
(3

2

)
×

(3
2

)
or

nine possible combinations of four cells—i.e., nine inequalities. However, by symmetry, three are simply
duplicates of others. The following tableau represents allof the inequalities:

(1,2) (1,3) (2,3)

(1,2) ab≥ d2 a f ≥ de d f ≥ be

(1,3) a f ≥ de ac≥ e2 dc≥ e f

(2,3) d f ≥ be dc≥ e f bc≥ f 2

where(i, j)× (ℓ,m) means form a matrix with elements from rowsi and j and columnsℓ andm of the
first tableau. Observe that when the three inequalities highlighted in bold are satisfied, all others will be
also satisfied. In fact, the inequality(1,3)× (1,2) : a f ≥ de derives from(1,2)× (1,2) : ab ≥ d2 and
(2,3)× (1,2) : d f ≥ be. Finally, inequality(2,3)× (1,3) : dc≥ e f derives from the other two, previously
established—viz.,(2,3)×(1,2) : d f ≥ beand(2,3)×(2,3) : bc≥ f 2. All other inequalities can be obtained
from the adjacent ones in this fashion.

Adding values to the type spaces of bidders expands the number of determinental restrictions required
to satisfy TP2, thus restricting the space of distributions that can be entertained. Likewise, adding bidders
to the game, particularly if the bidders are assumed symmetric, also restricts the space of distributions that
can be entertained. For example, suppose a third bidder is added, one who is symmetric to the previous two.
The probability mass function for triplets of values(v1,v2,v3), wherevn = 1,2,3 andn = 1,2,3, can be
represented as an array whose slices can then be representedby the following three matrices for bidders 1
and 2, indexed by the values of bidder 3:

P1 =





a d e
d b f
e f c



 , P2 =





d b f
b h g
f g i



 , andP3 =





e f c
f g i
c i j



 .

In general, if the number of bidders isN and the number of values isk, then, without symmetry or affiliation,
probability arrays have(kN −1) unique elements. Also,de Castro[2008] has shown that symmetry reduces
this to

(k+N−1
k−1

)
elements, while affiliation restricts where these

(k+N−1
k−1

)
probabilities can live on the simplex

via the determinental inequalities required by TP2. For it well-known that a function is MTP2 (affiliated), if
and only if, it is TP2 in all relevant collections of four points. As an aside, in this three-by-three example,
only nine constraints are relevant—viz.,

ab≥ d2, bc≥ f 2, d f ≥ be, dh≥ b2, hi ≥ g2, bg≥ f h, eg≥ f 2, g j ≥ i2, and f i ≥ cg.

If these hold, then the remainder are satisfied, too. Knowingthe maximum number of binding constraints is
relevant later in the paper when we discuss our test statistic.

Consider now the randomN-vectorV which equals(V1, . . . ,VN), having joint density (mass) functionfV
with realizationv equal to(v1, . . . ,vN). Affiliation can be formally defined as follows: for allv andv′, the
random variablesV are said to be affiliated if

fV(v∨v′) fV(v∧v′) ≥ fV(v) fV(v′)

where
(v∨v′) = [max(v1,v

′
1),max(v2,v

′
2), . . . ,max(vN,v′N)]
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denotes the component-wise maxima ofv andv′, sometimes referred to as thejoin, while

(v∧v′) = [min(v1,v
′
1),min(v2,v

′
2), . . . ,min(vN,v′N)]

denotes the component-wise minima, sometimes referred to as themeet.

3. Theoretical Model. We develop our theoretical model within the private-valuesparadigm, assuming
away any interdependencies. We consider a setN of bidders{1,2, . . . ,N}. Now, biddern is assumed to
drawVn, his private valuation of the object for sale, from the closed interval [v,v]. We note that, without
loss of generality, one can reparametrize the valuations from [v,v] to [0,1]. Below, we do this. We collect
the valuations in the vectorv which equals(v1, . . . ,vN) and denote this vector without thenth element by
v−n. Here, we have used the now-standard convention that upper-case letters denote random variables, while
lower-case ones denote their corresponding realizations.Note, too, thatV lives in [0,1]N.

We assume that the values are distributed according to the probability density functionfV : [0,1]N → R+

which is symmetric; i.e., for the permutationϕ : {1, . . . ,N} → {1, . . . ,N} , we have fV(v1, . . . ,vN) equals
fV(vϕ(1), . . . ,vϕ(N)). Letting fn(vn) denote the marginal probability density function ofVn, we note that it

equals
R 1

0 · · ·R 1
0 fV(v−n,vn) dv−n. (Below, we constrain ourselves to the case wherefn(·) is the same for all

n, but this is unnecessary and done only because, when we come to apply the method, we do have not enough
information to estimate the case with varyingfns.) Our main interest is the case whenfV is not the product
of its marginals—the case where the types are dependent. We denote the conditional density ofV−n given
vn by

fV−n|Vn(v−n|vn) =
fV(v−n,vn)

fn(vn)
.

Finally, we denote the largest order statistic ofV−n givenvn by Zn and its probability density and cumulative
distribution functions byf (zn|vn) andF(zn|vn), respectively.

We assume that bidders are risk neutral and abstract from a reserve price. Given his valuevn, biddern
tenders a bidsn ∈ R+. If his tender is the highest, then biddern wins the object and pays what he bid. A pure
strategy is a functionσ : [0,1] → R+ which specifies the bidσ(vn) for each valuevn. The interim pay-off of
biddern, who bidsn when his opponents followσ : [0,1] → R+, is

Π(vn,sn,σ) = (vn−sn)
Z σ−1(sn)

v
f (zn|vn) dzn = (vn−sn)F[σ−1(sn)|vn].

We focus on symmetric, increasing pure-strategy equilibria (PSE) which are defined byσ : [0,1] → R+ such
that

Π[vn,σ(vn),σ−n] ≥ Π(vn,s,σ−n) ∀ s, vn.

As mentioned above, in most theoretical models of auctions that admit dependence in valuation draws, re-
searchers have assumed thatfV satisfies affiliation. We do not restrict ourselves tofVs that satisfy affiliation.
We assume only thatfV belongs to a set of distributionsP which guarantees the existence and uniqueness of
a MPSE. This setP was fully characterized byde Castro[2008] in the particular case of grid distributions,
which are considered in our Assumption4.1, below.

LetC denote the set of continuous density functionsfV : [0,1]N →R+ and letA denote the set of affiliated
probability functions. For convenience and consistency with the notation used in later sections, we include
in A the set of all affiliated probability functions, not just thecontinuous ones. EndowC with the topology
of the uniform convergence—i.e., the topology defined by the norm of the supremum

‖ fV‖ = sup
v∈[0,1]N

| fV(v)| .
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LetD be the set of probability functionsfV : [0,1]N → R+ and assume there is a measureµ over it.
We now introduce a transformationTk : D →D which is the workhorse of our method. To defineTk, let

I : [0,1] → {1,2, . . . ,k} denote the function that associates tov ∈ [0,1] the ceiling⌈kv⌉—viz., the smallest

integer at least as large askv. Thus, for eachv∈ [0,1], we havev∈
(
I(v)−1

k , I(v)k

]

. Similarly, letS(v) denote

the “square” (hypercube)∏N
n=1

(
I(vn)−1

k , I(vn)
k

]

wherev collects(v1,v2, . . . ,vN)∈ [0,1]N. From this, we define

T
k : D → D as the transformation that associates to eachfV ∈ D the probability density functionTk( fV)

given by:

T
k( fV)(v) = kN

Z

S(v)
fV(u) du.

Observe thatTk( fV) is constant over each square∏N
n=1

(
mn−1

k , mn
k

]

, for all combinations ofmn ∈ {1, . . . ,k}.

The termkN above derives from the fact that each square∏N
n=1

(
mn−1

k , mn
k

]

has volume(1/kN). Note that for

all probability density functionsfV ∈D, T1( fV)(v) equals one for allv∈ [0,1]N; i.e.,T1( fV) is the uniform
distribution on[0,1]N.

We now need to introduce a compact notation to represent arrays of dimension

N times
︷             ︸︸             ︷

k×k×·· ·×k. We denote
byM kN

the set of arrays and by[P] an array in that set. When there are but two bidders, an array isobviously
just a matrix. In the application of this model to field data, which we describe in section 6,N is three. The
(i1, i2, . . . , iN)th element of an array is denoted[P](i1, i2, . . . , iN), or [P](i) for short, wherei denotes the vector
(i1, i2, . . . , iN). Now, I(v) = i if v ∈

(
i−1
k , i

k

]
. Thus, fork ∈ N, we define the finite-dimensional subspace

Dk ⊂D as
Dk =

{

fV ∈D : ∃ [P] ∈M kN
, fV(v) = [P][I(v1), . . . , I(vN)]

}

.

Observe thatDk is a finite-dimensional set. In fact, whenN is two, a probability density functionfV ∈ Dk

can be described by a(k×k) matrixP as follows:

fV(v1,v2) = [P](i, j) if (v1,v2) ∈
(

i −1
k

,
i
k

]

×
(

j −1
k

,
j
k

]

(3.1)

for i, j ∈{1,2, . . . ,k}. The definition offV at the zero measure set of points{(v1,v2) = ( i
k ,

j
k) : i = 0 or j = 0}

is arbitrary.
Note, too, that the width of the cells can be allowed to vary. For example, one might be 0.3 wide, while the

next one can be 0.2 wide, the third 0.1 wide, the next 0.25, and the last 0.15. In fact, the transformation can
be defined in terms of rectangles, instead of squares as above. To illustrate this, consider again the symmetric
case and introduce figure4. Let 0= r0 < r1 < r2 < .. . < rk−1 < rk = 1 be an arbitrary partitioning of the
interval[0,1]. Now, defineI : [0,1]→{1,2, . . . ,k} by I(v) = j if and only if v∈ (r j−1, r j ]. DefineB(v) as the
rectangle (box) wherev collects(v1, . . . ,vN) ∈ [0,1]N lies. Thus,B(v) ≡ ∏N

n=1(rI(vn)−1, rI(vn)]. Now, define

T
k
B( f 0

V)(v) =

R

B(v) f 0
V(u) du

R

B(v) du
.

The following theorem was proven byde Castro[2007]:

THEOREM 3.1. Let f0V be a symmetric and continuous probability density function. f0
V is affiliated if

and only if for all k,Tk
B
( f 0

V) is also affiliated.
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FIG 4. Symmetric Non-Equi-Spaced Grid

In our notation,
f 0
V ∈ A ⇔ Tk

B( f 0
V) ∈ A , ∀ k∈ N

or
A = ∩k∈NT

−k
B

(

A ∩Dk
)

.

Why is this important? Well, in many applications, the set of hypercubes defined by a largek will have many
empty cells, which causes problems in both estimation and inference. Thus, one may want to subdivide the
space of valuations irregularly, but symmetrically, as illustrated in figure4 whenN is two.

4. Test of Affiliation. The key result fromde Castro[2007] that allows us to develop our test of sym-
metric affiliation is the following: if the true probabilitydensity functionf 0

V exhibits affiliation, thenTk
B
( f 0

V),
a discretized version of it, will too. (See Theorem3.1, above.) To the extent that the grid distributionTk

B
( f 0

V)
can be consistently estimated from sample data, one can thentest whether the estimated grid distribution ex-
hibits affiliation. Of course, sampling error will exist, but presumably one can evaluate its relative importance
using first-order asymptotic methods.

Consider a sequence ofT auctions indexedt = 1, . . . ,T at whichN bidders participated by submitting the
NT bids{{snt}N

n=1}T
t=1. We note that affiliation is preserved under a monotonic transformation, so examining

a discretization ofg0
S(s), the true probability density function of bids under the hypothesis of expected-profit

maximizing equilibrium behaviour, is the same as examiningf 0
V(v). Of course, neitherf 0

V nor g0
S is known.

One can, however, construct an estimate ofTk
B
(g0

S) on the interval[0,1]N by first transforming the observed
bids according to

unt =
snt −s
s̄−s

n = 1, . . . ,N andt = 1, . . . ,T

wheres is the smallest observed bid and ¯s is the largest observed bid, and then by breaking-up this hypercube
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into L(= kN) cells and counting the number of times that a particularN-tuple falls in that cell.2 Now, the
random vectorY, which represents the number of outcomes that fall in each ofthe cells and equals the vector
(Y1,Y2, . . . ,YL)

⊤, follows a multinomial distribution having the joint probability mass function

gY(y|π) =
T!

y1! · · ·yL!

L

∏
ℓ=1

πyℓ
ℓ

whereπℓ equals Pr(Yℓ = yℓ), with yℓ = 0,1, . . . ,T, while π collects(π1, . . . ,πL) and lives on the simplex—
viz., the set

SL = {π|π ≥ 0L, ι⊤L π = 1}
with ιL being an(L×1) vector of ones. Note, too, thatι⊤y equalsT, the number of observations.

For ℓ = 1, . . . ,L, the unconstrained maximum-likelihood estimates of theπℓs are the(yℓ/T)s. To test for
affiliation, maximize the following logarithm of the likelihood function (minus a constant):

L(π) = y⊤ log(π)

subject to

1) the vectorπ lies in the simplexSL;
2) all of the determinental inequalities required for TP2 hold.

Then compare this value ofL with the unconstrained one.
While the determinental constraints required for TP2 are convex sets of the parameters when the subma-

trices are symmetric, they are not for general submatrices.However, by taking logarithms of both sides of
any general determinental inequality

ab≥ cd,

one can convert this into a linear inequality, which does give rise to convex constraint sets, albeit in variables
that are logarithms of the original variables. To wit,

loga+ logb− logc− logd ≥ 0

defines a convex set (in the transformed variables loga, . . . , logd). Of course, the adding-up constraint for
the simplex must be finessed—e.g., by considering the following:

exp(loga)+exp(logb)+exp(logc)+exp(logd)+ . . . ≤ 1,

which gives rise to a convex set. Thus, the problem is almost alinear programme.
For knownN and fixedk, the specific steps involved in implementing the test in thisproblem are the

following. First, form the grid distribution of the joint density as the unknown array[P]. Letting [E] denote
the array of counts for the grid distribution, the logarithmof the likelihood function for this multinomial
process is

∑
i
[E](i) log{[P](i)}. (4.1)

2We know that the support ofg0
S is strictly positive atσ0(v), the true upper bound of support of bids, and we assume thatf 0

V is
strictly positive atv, sog0

S is strictly positive atσ0(v), the true lower bound of support of bids. Consequently, the sample estimators of
the lower and upper bounds of support ofSconverge at rateT, which is faster than the rate of convergence of sample averages—rate√

T. Hence, when using sample averages in our estimation, we can ignore this first-stage, pre-estimation error—at least under first-order
asymptotic analysis.
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Now, the following inequalities must be met:

log{[P](i)} ≤ 0 and∑
i

exp(log{[P](i)}) ≤ 1, (4.2)

while symmetry requires the following linear restrictions:

[P](i) = [P][ϕ(i)] (4.3)

whereϕ(·) is any permutation, and affiliation requires the following determinental inequalities:

log

{
[P](i∨ i′)[P](i∧ i′)

[P](i)[P](i′)

}

≥ 0 (4.4)

hold. A test of affiliation, within a symmetric environment,involves comparing the maximum of equation
(4.1), subject to the constraints in (4.2) and (4.3), with the maximum of equation (4.1), subject to the con-
straints in (4.2), (4.3), and (4.4).

Our test of symmetric affiliation is based on the difference between the maximum of the logarithm of the
likelihood functionL([P̂]) and the maximum of the logarithm of the likelihood function under symmetric
affiliation L([P̃]). Obviously, the sampling theory associated with the difference in these two values of
the objective functionL is not straightforward because not all of the inequality constraints required by
MTP2 may hold and, from sample to sample, the ones that do hold can change, but we shall suggest several
strategies to deal with this, below.

Experience gleaned from other models with a related structure—e.g.,Wolak[1987, 1989a,b, 1991] as well
asBartolucci and Forcina[2000], who investigated MTP2 in binary models—suggests that the likelihood
ratio (LR) statistic

2[L([P̂])−L([P̃])] (4.5)

is not distributed according to a standardχ2 random variable.
Introducing vec[P] as a short-hand notation, for theL-vector created from the array[P], our constrained-

optimization problem can be summarized in a notation similar to that of Wolak (1989b) as:

max
vec[P]

y⊤ log(vec[P]) subject to h(vec[P]) ≥ 0J

whereh : RL → RJ is the function representing allJ relevant constraints whereJ ≤ L andL is the total
number of variables under the alternative hypothesis. (Here, for notational parsimony, we have ignored the
adding-up condition, which is implicit.)

ConsiderNδ(vec[P0]), a neighbourhood of the true value vec[P0]. Denote byH(vec[P0]) the matrix of par-

tial derivatives whose(i, j)-element is∂hi(vec[P])
∂vec[P] j

. Now, let us define the setB = {vec[P] : H(vec[P0])vec[P]≥
0, vec[P] ∈ RL}. Denote byI (vec[P0]) Fisher’s information matrix which is defined by

lim
T→∞

T−1E[P0]

[

− ∂2L(vec[P])

∂vec[P]∂vec[P]⊤

]

evaluated at vec[P0]. Finally, denote by

Π0 = H(vec[P0])I (vec[P0])−1H(vec[P0])⊤

the variance-covariance matrix ofh(vec[P̂]) and byω( j,J− j,Π0), the probability thatj constraints bind,
that(J− j) constraints are strictly satisfied; i.e., they are nonbinding. We have the following:
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THEOREM 4.1. Consider the local hypothesis testing problem

H0 : h(vec[P]) ≥ 0J vec[P] ∈ Nδ(vec[P0])

H1 : not H0.

The asymptotic distribution of the likelihood-ratio statistic satisfies the following property:

sup
b∈B

Pr[P0],I (vec[P0])−1(D ≥ c) = Pr[P0](D ≥ c) =
J

∑
j=0

Pr(Wj ≥ c)ω( j,J− j,Π0).

where D is the asymptotic value of the test statistic, while Wj is an independentχ2 random variable having
j degrees of freedom.

PROOF. It is sufficient and straightforward to verify that the assumptions of Theorem 4.2 inWolak
[1989b] are satisfied. �

Because this statistic depends on the unknown population grid distribution[P0], the statistic is not pivotal.
Kodde and Palm[1986] have provided lower and upper bounds for this test statistic for tests of various sizes
and different numbers of maximal constraints.

According toWolak [1989b], the best way to evaluate the weights is using Monte Carlo simulation.
Wolak also offered lower and upper bounds for the probabilities above (see his equations 19 and 20, p.215);
these bounds are based onKodde and Palm[1986]. An alternative strategy would be to adapt the bootstrap
methods ofBugni [2008] to get the appropriate p-values of the test statistic. Yet athird strategy would be to
adapt the subsampling methods described inPolitis et al.[1999] as was done byRomano and Shaikh[2008].

4.1. Some Comparisons with Other Nonparametric Methods.It should be noted, too, that our proposed
estimation strategy involves nothing more than estimatingan histogram using a special class of grids.Scott
[1992, p. xi] has argued that the classical histogram “remains themost widely applied and most intuitive
nonparametric estimator.” In other words, the procedure proposed here is not based on any unfamiliar con-
cepts. Of course, there are more statistically efficient methods, but they also have limitations, asScott[1992]
has discussed. Also, although the rate of convergence of histogram estimation is slow, it is still reasonable;
seeScott[1992, Theorem 3.5, p. 82].

Note, too, the similarities between grid-distribution andkernel-smoothed estimators. Kernel-smoothed
density estimators are well-behaved and have good rates of convergence when the probability density func-
tions to be estimated are continuously differentiableC1.3 The setC1 is dense in the set of all probability
density functions. Similarly, grid distribution estimators are well behaved for probability density functions
in D∞ = ∪∞

k=1D
k, which is also a dense set in the set of all probability density functions.4 While C1 proba-

bility density functions form a familiar and well-known class probability density functions, the probability
density functions inDk are also familiar because they are just (a special class of) simple functions, which
are fundamental, such as in the definition of the Lebesgue integral. When estimating grid distributions, one
has to choosek or, equivalently, the size of the bin(1/k), which is nothing more than the bandwidth of the
grid-distribution estimator. Similarly, kernel-smoothing requires a choice of bandwidth parameter, too. In
sum, nonparametric estimation using either grid distributions or smoothed kernels is very similar.

3Methods exist that require fewer smoothness conditions—e.g., the function need just be continuousC0; others require additional
smoothness,C2 or higher. This does not change our claims.

4Recall thatDk is the set of grid distributions where the interval is subdivided intok intervals; i.e.,Dk ≡ Tk(D).
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4.2. Consistency and Power of the Proposed Test.Of course, one concern is thatk appears fixed in our
analysis, butT is increasing, so our test is potentially inconsistent. We imagine a sequence of{kT} with
values increasing asT increases, but not as fast asT. Below, we discuss in detail what we have in mind.
Another worry is that the test statistic will be ill-behavedif kT tends to infinity. Thus, an upper bound̄k
must exist. This discussion leads us to introduce the following assumption concerningf 0

V which allows us to
side-step these technical problems:

ASSUMPTION4.1. The true data-generating process f0
V is a grid distribution; i.e., there exists̄k ∈ N

such that f0V ∈D k̄.

As the discussion above made clear, this assumption is similar to the assumptions of smoothness con-
cerning f 0

V which kernel-smoothing methods require. In addition to this analogy, we offer two additional
justifications for Assumption4.1.

First, the set of grid distributions is dense in the set of alldistributions: even if the data-generating process
(DGP) f 0

V were not a grid distribution, there is a grid distribution that is arbitrary close to it. To wit, no finite
amount of data could reject Assumption4.1. In this sense, Assumption4.1 is almost “no assumption.”

Second, the DGP in question is a distribution of values, which are discrete (up to, say, dollars or cents
or Yen or Won or whatever units one wants). When one assumes a smooth probability density function, one
is making an approximation, for computational convenience: such an approximation does not seem, to us
at least, any more appealing than the one we make. On the contrary, it seems more natural to us to assume
simple probability density functions rather than any smoothness conditions. In general, smoothness is just
a tool used to lighten the burden in the technical analysis ofa particular problem. In our case, by assuming
that the distribution is simple (i.e., a grid distribution), we can stay closer to reality.

Under Assumption4.1, our test is consistent. For Assumption4.1implies that ak exists such thatf 0
V ∈Dk.

Therefore, the number of inequalities required for affiliation remains fixed. We are then in the standard
framework considered by Wolak, which has a fixed set of inequalities. Thus, consistency follows directly
from Wolak’s research. A technically sophisticated readermay feel that our consistency result is trivial,
once Assumption4.1 is made. The point of this paper (and this subsection, in particular) is not to provide a
technical proof of consistency, but rather to remove any doubts concerning the consistency of our test under
a reasonable assumption.

The power of the proposed test clearly depends on the choice of k. Werek chosen to be one (i.e., a uniform
distribution on theN-dimensional hypercube), then affiliation would never be rejected. On the other hand,
given a finite sample ofT observations, a largek will result in many cells having no elements. While the
choice ofk is obviously important and certainly warrants additional theoretical investigation, perhaps along
the lines of research in time-series analysis byGuay et al.[2008] concerning optimal adaptive detection of
correlation functions, it is beyond the scope of this paper.In fact, in most applications to auctions, where
samples are often quite small,k will be dictated by practical considerations—viz., the relative size ofT.

4.3. Bounding the Number of Inequalities.For our test statistic to be well-behaved, it is important to
know that an upper bounds exists on the number of inequalities. For arbitraryN andk, assuming a symmetric
distribution, we can construct a bound on how many inequalities there are. Because we focus on symmetric
distributions,

[
f 0
V

]
(i1, i2, . . . , iN) =

[
f 0
V

](
i′1, i

′
2, . . . , i

′
N

)

where(i′1, i
′
2, . . . , i

′
N) is a permutation of(i1, i2, . . . , iN). Thus, we need only consider sorted indices, indices

(i1, i2, . . . , iN) for which i1 ≥ i2 ≥ ·· · ≥ iN. Consider(i1, i2, . . . , iN), a sorted index havingℓ different numbers;
let r1,. . . ,rℓ denote the number of repetitions of the different numbers in(i1, i2, . . . , iN). Obviously,r1+ . . .+
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rℓ = N. Using this notation, the number of permutations of(i1, i2, . . . , iN) is then N!
r1!...rℓ!

. For instance, the

index(4,3,3,2,2,2) has 6!
1!2!3! or 120 different permutations.

Given the above, we can now focus our attention to sorted indices only. Consider the lexicographic order
of them. In this way, we can attribute an unambiguous naturalnumber to each sorted index of lengthN.
For example, considerN = 3 in which case (1,1,1) corresponds to 1; (2,1,1), to 2; (2,2,1), to 3; (3,1,1) to
5; (3,2,2), to 7; and (4,1,1) to 11. It is important to developan algorithm to convert a sorted index into a
corresponding number, which we describe now.

First, let us define Num( j,N) as the number of all indices that are weakly below (in the lexicographic
order) to the index( j, j, . . . , j); i.e., the index that hasj in all positions and has lengthN. It is easy to
see that Num(1,N) = 1, because there is just one index weakly below(1,1,1, . . . ,1) : (1,1,1, . . . ,1), itself.
Also, Num(2,2) = 3, because(1,1), (2,1), and(2,2) are the sorted indices weakly below(2,2). Similarly,
Num(2,3) = 4, because(1,1,1), (2,1,1), (2,2,1), (2,2,2) are the sorted indices weakly below(2,2,2).
From this argument, it is not difficult to see that Num(2,N) = N + 1. Observe, too, that Num( j,1) = j,
because there are only the indexes(1), (2), . . ., ( j) weakly below( j). de Castro[2008] has proven the
following:

LEMMA 4.1. Num( j,N) =
(N+ j−1

j−1

)
.

Thus, if we fix the number of biddersN and the number of intervalsk, then there areM ≡ Num(k,N) =
(N+k−1

k−1

)
different indices. Affiliation will be satisfied if the corresponding inequality is satisfied for any

pair of indices(i, i′). Since there are
(M

2

)
or M(M−1)

2 pair of such indices, it is sufficient to test(M2−M)/2
inequalities. Note, however, that this is an upper bound because some inequalities are implied by others.
The above discussion also provides some guidance concerning how to choose the inequalities; however, in
an effort to conserve space, we leave the discussion of what the minimal set of sufficient inequalities is to
another paper.

4.4. Two Related Papers.Like us,Li and Zhang[2008] have examined some important economic im-
plications of affiliation. Instead of considering bids, however, Li and Zhang examined the entry behaviour
of potential bidders whose signals may be affiliated. Theirsis a parametric analysis and they implemented
their test using simulation methods, examining timber sales organized by the Department of Forestry in the
State of Oregon. Li and Zhang found only a small degree of affiliation, perhaps because the zero/one entry
decision is not as informative as bid data.

Jun et al.[2009] have developed a consistent nonparametric test designed for continuous data. By avoid-
ing discretization, Jun et al. presumably have more information than we do. On the other hand, having
rejected affiliation with their test, it is unclear what to dowithin their framework because an alternative hy-
pothesis is unspecified. In contrast, our approach augmentsthe theoretical work ofde Castro[2008] where
the alternative hypothesis is clearly outlined.

4.5. Policy Uses for Grid Distributions. de Castro[2008] has developed a complete theoretical treat-
ment of grid distributions, even in the absence of affiliation. His idea is as follows: first, assume thatf 0

V ∈Dk

for somek; i.e, the DGP is a grid distribution—Assumption4.1 holds. Standard estimation methods (his-
tograms) can be used to calculate[P̂] ∈Dk that best approximatef 0

V .
Under de Castro’s method, one can then test whether[P̂] has a symmetric MPSE. The method developed

by de Castro is exact: to wit, modulo sampling error,[P̂] has a symmetric MPSE if and only if the method
detects it. Errors can occur only in simple numerical operations such as sums, divisions and square roots. It
turns out that determining the existence of a symmetric MPSEis nontrivial when affiliation is absent.
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If [P̂] has a symmetric MPSE, then it can be used to calculate expected revenues under the first- and
second-price auctions, denotedR1

[P̂]
and R2

[P̂]
, respectively. In this way, one can determine which auction

format yields an higher expected revenue for[P̂] and, also, the magnitude of the revenue difference(R2
[P̂]

−
R1

[P̂]
), to decide whether it is significant.

The procedure can then be repeated using[P̃], which is obtained under the constraint that the distribution
satisfies affiliation. We know that, under affiliation, a symmetric MPSE exists and that(R2

[P̃]
−R1

[P̃]
) > 0, but

the method also allows one to decide whether the magnitudes of the differences(R1
[P̂]

−R1
[P̃]

) and(R2
[P̂]

−R2
[P̃]

)

are economically important.
Finally, the method allows one to examine sampling variability by repeating the above procedures using

resampled draws from[P̂] or [P̃].
Thus, the grid distributions proposed in this paper have many advantages because a theory exists that

can be used for policy analysis. Such theories have not yet been developed for the methods proposed by
Li and Zhang[2008] or Jun et al.[2009]; if affiliation is rejected under their methods, then what to do?

5. Monte Carlo Experiment. Below, we describe a small-scale Monte Carlo experiment used to inves-
tigate the numerical as well as small-sample properties of our testing strategy. Our simulation study involved
samples of sizeT equal 100 and 250 withN of three bidders; each sample was then replicated 1,000 times. In
all of the experiments, the building blocks were triplets ofindependently- and identically-distributed uniform
random variables on the interval[0,1]. We considered the following three types of experiments:

SI) (U1,U2,U3) are independent uniform random variables;
SA) (U1,U2,U3) are symmetric and affiliated random variables according to the Frank copula which has

the following generator function:

ζ(u) = − log

[
exp(−αu)−1
exp(−α)−1

]

, (5.1)

and inverse-generator function

ζ−1(τ) = − 1
α

log(1+exp(τ)[exp(−α)−1]) . (5.2)

where the parameterα controls affiliation;
AN) (U1,U2,U3) are negatively correlated random variables having the following correlation matrix:

Σ =





1.0 −0.1 −0.2
−0.1 1.0 −0.3
−0.2 −0.3 1.0



 = FF⊤

where

F =





1.0000 0.0000 0.0000
−0.1000 0.9950 0.0000
−0.2000 −0.3216 0.9255





Above, SI denotes symmetric independence, which is the knife-edge case of affiliation when allJ of the
TP2 determinants are exactly zero; SA denotes symmetric affiliation, which is the case when all of the TP2

determinants are positive; and AN denotes asymmetric nonaffiliation, which is the case when none of the
TP2 determinental inequalities are satisfied.
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What interpretation can be given to the dependence parameterα? In the bivariate case, the larger is a
positive value ofα, the greater the concordance, positive dependence. On the other hand, a very negative
value ofα indicates negative dependence. Independence obtains whenα approaches zero. Note, however,
that whenN exceeds two,α is restricted to be positive because a negativeα would mean a nonmonotonic
inverse-generator function of the Frank copula; see example 4.22, page 123 inNelsen[1999]. The Frank
copula has the followingN-variate form:

Cζ(u1, . . . ,uN) = − 1
α

log

(

1+
∏N

i=1[exp(−αui)−1]

[exp(−α)−1]N−1

)

α > 0. (5.3)

Mueller and Scarsini[2005] have characterized various notions of positive dependence, such as MTP2, for
the Archimedean family of copulas, of which the Frank copulais a member. They have also presented a
general condition that the generator of an arbitrary Archimedean copula must satisfy in order to guarantee
that MTP2 holds (cf. Theorem 2.11 in their paper).Genest[1987] has shown that the relevant condition for
the Frank copula coincides with the condition that guarantees a monotonic inverse-generator function when
N exceeds two; viz.,α must be positive. Genest’s condition requires that the Frank copula satisfy TP2 as he
was only concerned with the bivariate Frank copula. As mentioned above, however, it is well-known that a
function is MTP2 if and only if it is TP2 in all pairs.

To simulate data from a Frank copula with affiliation, we followed the approach described byLuciano et al.
[2004]. Theirs involvesconditional samplingwhere, initially,w1, aU(0,1) random draw is taken, and then
u1 is set equal to it. The next (dependent) draw is taken fromC2(w2|u1), andu3 is drawn fromC3(w3|u1,u2)
where all thewis are independentU(0,1) draws. We implemented conditional sampling using the parame-
terization of the Frank copula given in equation (5.3) in conjunction with the generator function defined
in equation (5.1) and the inverse-generator function defined in equation (5.2). Specifically, to generate
symmetrically-affiliated draws(u1,u2,u3) from the trivariate Frank copula, we did the following:

1. simulate the independent random variables(w1,w2,w3) from U(0,1);
2. setu1 equal tow1;
3. usew2 andu1 to calculate

u2 = − 1
α

(

1+
w2[1−exp(−α)]

w2[exp(−αu1)−1]−exp(−αu1)

)

; (5.4)

4. usew3 as well asu1 andu2 to define the following polynomial equation of order two in the variable
[exp(−αu3)−1]:

w3 = D−1
2 [exp(−αu3)−1][exp(−α)−1]×
([exp(−α)−1]+ [exp(−αu1)−1][exp(−αu2)−1])2

where
D2 =

(
[exp(−α)−1]2 +[exp(−αu1)−1][exp(−αu2)−1][exp(−αu3)−1]

)2

which is then solved foru3.

The above algorithm yields three symmetrically-affiliatedrandom draws from the trivariate Frank copula for
one simulation draw; this procedure was repeated either 100or 250 times for each of 1,000 replications.

In figure5, we present a plot of all the points, whenN is three andT is 250, for one replication generated
under independence, weak affiliation. (Remember: anα of zero is the independent case.) Note that the
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FIG 7. SI, SA, NA: k= 3, T = 100and T= 250

scatterplot looks as one would expect—uniform. In figure6, we present a plot of all the points, whenN is
three andT is 250, for one replication generated whenα is 2, which means only modest affiliation. Note, in
the scatterplot, a bit of white space exists in the extremes—e.g., near (0,1,1).

We solved the constrained nonlinear optimization problemsspecified by equations (4.1), (4.2), (4.3),
and (4.4) by implementing our methods using the programming language AMPL; for additional details
concerning AMPL, seeFourer et al.[2002]. Using AMPL has a number of advantages: first, its user interface
admits choice among a variety of nonlinear optimization solvers, including SNOPT and MINOS, without
having to modify code significantly; second, AMPL can also perform automatic differentiation on nonlinear
programming problems; and, third, the language is free. In fact, users can run the code for free using the
NEOS server online. The code for a representative estimation problem ran in around one second on an
unremarkable desktop computer.

In figure 7 are presented the frequency distributions of the LR test statistics for SI, SA, and NA when
k is three andT is either 100 or 250. Our test appears able to distinguish relatively well between weak
and modest affiliation, and to detect nonaffiliation extremely well. The test has relatively high power in the
case NA, nonaffilation. Note, too, that asT increases, the distribution of the test statistic under SI remains
constant, the one under SA shifts to the left, and the one under NA shifts to the right.

For k of three andT of 100 with symmetric independence, one can calculate the weights {ω( j,J−
j,Π0)}J

j=0 in Theorem4.1. In figure8, we present the exact probability density function of the asymptotic
approximation as well as the kernel-smoothed estimate using the Monte Carlo data. The approximation
appears quite close to the actual process, suggesting that the first-order asymptotics are working quite well.

6. Empirical Application. Above, in section 3, in the tradition of the theoretical literature concerning
auctions, we developed our model of bidding in terms of valuations for an object to be sold at auction under
the first-price, sealed-bid format. Sealed-bid tenders areoften used in procurement—i.e., low-price, sealed-
bid auctions at which a buyer (often a government agency) seeks to find the lowest-cost producer of some
good or service. In this section, we report results from an empirical investigation of procurement tenders
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FIG 8. Asymptotic and Kernel-Smoothed Density of Test Statistic: SI, k= 3, T = 100

for road resurfacing by a government agency. Although it is well-known that results from auctions can be
translated to procurement, and vice versa, sometimes this translation is tedious. We direct the interested
reader to the work ofde Castro and de Frutos[forthcoming] who have developed a procedure to translate
results from auctions to procurement.

We have applied our empirical framework to data from low-price, sealed-bid, procurement auctions held
by the Department of Transportation (DOT) in the State of Michigan. At these auctions, qualified firms are
invited to bid on jobs that involve resurfacing roads in Michigan. We have chosen this type of auction be-
cause the task at hand is quite well-understood. In addition, there are reasons to believe that firm-specific
characteristics make the private-cost paradigm a reasonable assumption; e.g., the reservation wages of own-
ers/managers, who typically are paid the residual, can varyconsiderably across firms. On the other hand,
other features suggest that the cost signals of individual bidders could be dependent, perhaps even affiliated;
e.g., these firms hire other factor services in the same market and, thus, face the same costs for inputs such
as energy as well as paving inputs. For example, suppose paving at auctiont has the following Leontief
production function for biddern:

qnt = min

(
hnt

δh
,
ynt

δy
,
znt

δz

)

whereh denotes the managerial labour, whiley andz denote other factor inputs which are priced compet-
itively at Wt and Xt , respectively, at auctiont. Assume thatRn, biddern’s marginal value of time, is an
independent, private-cost draw from a common distribution. In addition, assume that the other factor prices
Wt andXt are draws from another joint distribution, and that they areindependent ofRn. The marginal cost
per mileCnt at auctiont can be then written as:

Cnt = δhRn +δyWt +δzXt ,

which is a special case of an affiliated private-cost (APC) model, known as aconditional private-costmodel.
The costs in this model are affiliated only when the distribution of Rn is log-concave, which is discussed
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TABLE 1
Sample Descriptive Statistics—Dollars/Mile: N= 3; T = 278

Variable Mean St.Dev. Median Minimum Maximum
Engineer’s Estimate 475,544.54 491,006.52 307,331.26 54,574.41 3,694,272.59
Winning Bid 466,468.63 507,025.81 286,102.57 41,760.32 3,882,524.81
All Tendered Bids 507,332.42 564,842.58 317,814.77 41,760.32 5,693,872.81

extensively inde Castro[2008]. Li et al. [2000] have studied this model, extensively. In short, the affiliated
private-cost paradigm (APCP) seems a reasonable null hypothesis.

We did not investigate issues relating to asymmetries across bidders because we do not know bidder
identities, data necessary to implement such a specification. Because no reserve price exists at these auctions,
we treat the number of participants as if it were the number ofpotential bidders and focus on auctions at
which three bidders participated. Thus, we are ignoring thepotential importance of participation costs which
others, includingLi [2005], have investigated elsewhere.

The data for this part of the paper were provided by the Michigan DOT and were organized and used by
Hubbard et al.[2009]; a complete description of these data is provided in that paper. In table1, we present
the summary descriptive statistics concerning our sample of 834 observations—278 auctions that involved
three bidders each. We chose auctions with just three bidders not only to illustrate the general nature of
the method (if we can do three, then we can doN), but also to reduce the data requirements. When we
subdivide the unit hypercube intokN cells, the average number of bids in a cell is proportional to(kN/T).
WhenN is very large, the sample size must be on the order ofkN in order to expect at least one observation
in each cell. This example also illustrates the potential limitations of our approach; viz., even in relatively
large samples, some of the cells will not be populated, sok will need to be kept small. However, one can
circumvent this problem by varying the width of the subdivisions as we do below. Of course, one must then
adjust the conditions which define the determinental inequalities. We describe this below, too.

Our bid variable is the price per mile. Notice that both the winning bids as well as all tendered bids vary
considerably, from a low of $41,760.32 per mile to a high of $5,693,872.81 per mile. What explains this
variation? Well, presumbably heterogeneity in the tasks that need to be performed. One way to control for
this heterogeneity would be to retrieve each and every contract and then to construct covariates from those
contracts. Unfortunately, the State of Michigan cannot provide us with this information, at least not any time
soon.

How can we deal with this heterogeneity? Well, in our case, wehave an engineer’s estimatep of the price
per mile to complete the project.5 We assume thatCnt, the cost to biddern at auctiont, can be factored as
follows:

Cnt = λ0(pt)εnt (6.1)

whereλ0 is a known function. One example of this is

Cnt = ptεnt.

Another is
Cnt = δ0pδ1

t εnt.

5Of course, besidesp, it is possible that other covariates, which are common knowledge to all the bidders, exist. If these other
common-knowledge covariates exist, then we could wrongly conclude that the signals have a strong form of correlation when, in
fact, the correctly-specified model of signals (conditionedon the common-knowledge information) would have only small correlation.
Unfortunately, we do not have access to any additional information. Were such information available, then we would condition on it as
well.
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FIG 9. Data as well as NP, LS, and LAD Regressions: Logarithm of Bids versus Logarithm of Engineer’s Estimate

Under equation (6.1), the equilibrium bidBnt at auctiont for biddern takes the following form:

Bnt = λ0(pt)β(εnt),

so
Bnt

λ0(pt)
= β(εnt).

Of course, we do not knowλ0, but we can estimateλ0 either parametrically, under an appropriate assumption,
or nonparametrically, using the following empirical specification:

logBnt = ψ(pt)+Unt

whereψ(pt) denotes− log[λ0(pt)] andUnt denotes log[β(εnt)].
Empirical results from this exercise are presented in figure9. In this figure are presented results for

the nonparametric regression (NP), the least-squares regression (LS), the least-absolute-deviations (LAD)
regression. To get some notion of the relative fit, note that the R2 for the LS regression is around 0.97.
The LS estimates of the constant and slope coefficients are−0.3114 and 1.0268, respectively, while LAD
estimates of the constant and slope coefficients are−0.3221 and 1.0276, respectively.

Subsequently, we took the normalized fitted residuals, which (for the LS case) are depicted in figure10,
and applied the methods described in section 4 above for ak of two. Our test results are as follows: the
maximum of the logarithm of the likelihood function (minus aconstant) without symmetry was−442.50,
while the maximum of the logarithm of the likelihood function under symmetry was−444.88, and under
symmetric affiliation it was also−444.88—a total difference of 2.38.6 At size 0.05, twice the above differ-
ence is above the lower bound provided byKodde and Palm[1986], but below the upper bound, so the test
is inconclusive.

6The results for the LAD residuals were identical: the probability array obtained by discretizing the LAD residuals was exactly the
same as in the LS case because none of the fitted residuals was classified differently. This is not, perhaps, surprising given the similar
fits of the two empirical specifications.
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Because ak of two is unusually small, we introduced a symmetric, but nonequispaced, grid distribution—
like the one depicted in figure4, but with intervals[0.,0.4), [0.4,0.6), and[0.6,1.0]. The TP2 inequalities
can be derived in the usual way, but the adding-up inequalitymust be rewritten, in this case as

a+2b+8c+8d+16e+8 f +4d+2h+4i +4b+16f +8g+8e+2g+8 j +8 f +16c+8i ≤ 1.

Again, we applied our methods. Our test results are as follows: the maximum of the logarithm of the like-
lihood function (minus a constant) under symmetry was−715.72, while the maximum under symmetric
affiliation was−716.49—a difference of 0.77.7 At size 0.05, twice the above difference is below the lower
bound provided by Kodde and Palm, so we do not reject the hypothesis of symmetric affiliation. To put these
results into some context, the centre of the simplex had a logarithm of the likelihood function of−916.24;
using the marginal distribution of low, medium, and high costs (0.4233,0.4808,0.0959) and imposing inde-
pendence yielded a logarithm of the likelihood function of−784.67.

7. Summary and Conclusions. We have constructed a tractable empirical model of equilibrium be-
haviour at first-price auctions when bidders’ private valuations are dependent, but not necessarily affiliated.
Subsequently, we developed a test of affiliation and then investigated its small-sample properties. We ap-
plied our framework to data from low-price, sealed-bid auctions used by the Michigan DOT to procure
road-resurfacing: we do not reject the hypothesis of affiliation in cost signals.

This information is potentially useful to a policy maker. The apparent high degree of estimated affiliation
also explains why low levels of observed competition are often sufficient to maintain relatively low profit
margins: strong affiliation is akin to fierce competition. Under strong affiliation, a potential winner knows
that his nearest competitor probably has a valuation (cost)close to his, and this disciplines his bidding
behaviour: he become more aggressive than under independence.

7The results for the LAD residuals were virtually identical:the probability array obtained by discretizing the LAD residuals was
almost the same as in the LS case.
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Our research has other policy implications, too. As mentioned above, it is well-known that, under af-
filiation, the English auction format, on average, generates more revenue for the seller than the first-price,
sealed-bid format. In procurement, under affiliation, an English or a Vickrey auction would get the job done
more cheaply than the low-price, sealed-bid format, Were the English or Vickrey formats being used and
affiliation not rejected, then the procurement agency wouldbe justified in its choice of mechanism. What
remains a bit of a puzzle is why the low-price, sealed-bid format is used in the presence of such strong
affiliation. Perhaps, other features, such as the ability ofthe low-price, sealed-bid auction format to thwart
collusion are important, too. Alternatively, perhaps other moments of the bid distribution, such as the vari-
ance, are important to the procurement agency.

On the other hand, had affiliation been rejected, then the procedures described in section 4 could be used
to determine which auction format would get the job done mostcheaply, on average. Again, it is possible
that the English or Vickrey formats would still be preferred. In any case, the methods described in section 4
permit a better understanding of the bidding differences, which can aid in choosing the best auction format.
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Aleksandra B. Slavković and Stephen E. Fienberg. Algebraic geometry of 2×2 contingency tables. In Paolo Gibilisco, Eva Ricco-

magno, Maria-Piera Rogantin, and Henry P. Wynn, editors,Algebraic and Geometric Methods in Statistics. New York: Cambridge
University Press, 2009.

Frank A. Wolak. An exact test for multiple inequality and equality constraints in the linear regression model.Journal of the American
Statistical Association, 82:782–793, 1987.

Frank A. Wolak. Testing inequality constraints in linear econometric models.Journal of Econometrics, 41:205–235, 1989a.
Frank A. Wolak. Local and global testing of linear and nonlinear inequality constraints in nonlinear econometric models.Econometric

Theory, 5:1–35, 1989b.
Frank A. Wolak. The local nature of hypothesis tests involving inequality constraints in nonlinear models.Econometrica, 59, 1991.

DEPARTMENT OFECONOMICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN , USA
DEPARTMENT OFECONOMICS, UNIVERSITY OF MELBOURNE, AUSTRALIA

E-MAIL : deCastro.Luciano@gmail.com
HPaarsch@UniMelb.edu.au

mailto:deCastro.Luciano@gmail.com
mailto:HPaarsch@UniMelb.edu.au

	Motivation and Introduction
	Affiliation and TP2
	Theoretical Model
	Test of Affiliation
	Some Comparisons with Other Nonparametric Methods
	Consistency and Power of the Proposed Test
	Bounding the Number of Inequalities
	Two Related Papers
	Policy Uses for Grid Distributions

	Monte Carlo Experiment
	Empirical Application
	Summary and Conclusions
	Acknowledgements
	References
	Author's addresses

