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TESTING AFFILIATION IN PRIVATE-VALUES MODELS OF FIRST-PRIC E AUCTIONS
USING GRID DISTRIBUTIONS

BY LUCIANO |I. DE CASTRO AND HARRY J. FAARSCH

University of lllinois at Urbana-Champaign
University of Melbourne

Within the private-values paradigm, we construct a traetaphpirical model of
equilibrium behaviour at first-price auctions when biddgeduations are potentially
dependent, but not necessarily affiliated. We develop adkesffiliation and apply
our framework to data from low-price, sealed-bid auctions g the Department of
Transportation in the State of Michigan to procure roadufeging services: we do not
reject the hypothesis of affiliation in cost signals.

1. Motivation and Introduction. During the past half century, economists have made coraiter
progress in understanding the theoretical structure ofibgum strategic behaviour under market mecha-
nisms, such as auctions, when the number of potential paatits is relatively small; sd€rishna[201( for
a comprehensive presentation and evaluation of progress.

One analytic device, commonly used to describe bidder ratitin at single-object auctions, is a con-
tinuous random variable which represents individual-gjpeheterogeneity in valuations. The conceptual
experiment involves each potential bidder’s receivingandirom a distribution of valuations. Conditional
on his draw, a bidder is then assumed to act purposefullyjmaixg either the expected profit or the ex-
pected utility of profit from winning the auction. Anotheefjuently-made assumption is that the valuation
draws of bidders are independent and that the bidderexasmtesymmetric—their draws being from the
same distribution of valuations. This framework is oftefereed to as thesymmetric independent private-
values paradignisymmetric IPVP). Under these assumptions, a researchéinen focus on a representative
agent’s decision rule when describing equilibrium behario

At many real-world auctions, the latent valuations of ptitdrbidders are probably dependent in some
way. In auction theory, it has been assumed that dependatisiesaffiliation, a term coined bivilgrom and Weber
[1983. Affiliation is a condition concerning the joint distridonh of signals. Often, affiliation is described
using the intuition presented by Milgrom and Weber: “royglthis [affiliation] means that a high value of
one bidder’s estimate makes high values of the others’ asisnmore likely.” Thus described, affiliation
seems like a relatively innocuous condition. In the casenatinuous random variables, following the path
blazed byKarlin [196g, some refer to affiliation amultivariate total positivity of order twoor MTP, for
short. Essentially, under affiliation, with continuousdam variables, the off-diagonal elements of the Hes-
sian of the logarithm of the joint probability density fuitet of signals are all non-negative; i.e., the joint
probability density function is log-supermodular. Undeinj normality of signals, affiliation requires that
all the pair-wise covariances be weakly positive.

How is affiliation related to other forms of dependence? @mrswo continuous random variables
andV,, having joint probability density functiory, v, (v1,v2) as well as conditional probability density
functions fy,\, (v2|v1) and fy, v, (v1|v2) and conditional cumulative distribution functiohg,, (v2|v1) and
R v, (Va|v2). Introduceg(-) andh(-), functions that are nondecreasing in their argumetgsCastrd2007
has noted that affiliation implies &, (V2|v1)/ fu,, (V2|v1)] is decreasing iry (andv; in the other case),

AMS 2000 subject classificatiorBrimary 62P20, 91B26; secondary 91B44.
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often referred to as a decreasingerse hazard ratewvhich implies b) PfV, < v»|V3 = vq) is nonincreasing

in v1 (andv in the other case), also referred topasitive regression dependeneéhich implies c) PfV, <
V2|1 < v1) is nonincreasing irv; (andv, in the other case), also referred tolaf-tail decreasingn v;
(v2), which implies d) colg(V1,V2),h(Vi, V)] is positive, which implies that e) c@y(V1),h(V,)] is positive,
which implies f) coVi, V) is positive. The important point to note is that affiliatiana much stronger
form of dependence than positive covariance. In addititenCastrd2007 has demonstrated that, within
the set of all signal distributions, the set satisfying ifibn is small, both in the topological sense and in
the measure-theoretic sense.

Affiliation delivers several predictions and results: fitstder affiliation, the existence and uniqueness of a
monotone pure-strategy equilibrium (MPSE) is guarant@ésh, four commonly-studied auction formats—
the oral, ascending-price (often referred to by econonaistdeEnglish and the second-price, sealed-bid
(often referred to by economists as Wiekrey) as well as two first-price ones—can be ranked in terms of the
revenues they can be expected to generate. SpecificalBxpieeted revenues at English auctions are weakly
greater than those at Vickrey auctions which are greatertti@se at first-price auctions—either the sealed-
bid or the oral, descending-price (often referred to by ecuists as thédutch) formats. Note, however,
that when bidders are asymmetric, their valuation drawsghom different marginal distributions, these
rankings no longer apply. In fact, in general, very littlendze said about the revenue-generating properties
of the various auction formats and pricing rules under asginies.

Investigating equilibrium behaviour at auctions, emgili; when latent valuations are affiliated, has
challenged researchers for some tirhaffont and Vuong[199¢ showed that identification has been im-
possible to establish in many models when affiliation is @nésin fact, Laffont and Vuong demonstrated
that any model within the affiliated-values paradigm (AV®pbservationally equivalent to a model within
the affiliated private-values paradigm (APVP). For thissag virtually all empirical workers who have
considered some form of dependence have worked within théPAP

Only a few researchers have dealt explicitly with model$imithe APVP. In particulad.i et al. [200(
have demonstrated nonparametric identification withindbeditional IPVP, a special case of the APVP,
while Li et al. [200] have demonstrated nonparametric identification witheARPVP. One of the problems
that Li et al. faced when implementing their approach is tatparametric kernel-smoothed estimators are
often slow to converge. In addition, Li et al. do not impod#iafion in their estimation strategy, so the first-
order condition used in their two-step estimation strateggd not constitute an equilibriutdubbard et al.
[2009 have sought to address some of these technical problems sesmiparametric methods which sacri-
fice the full generality of the nonparametric approacheu of additional structure.

To date, except foBrendstrup and Paarsgp007, no one has attempted to examine, empirically, models
in which the private values are potentially dependent, btinecessarily affiliated. Incidentally, using data
from sequential English auctions of two different obje&sendstrup and Paarsch found weak evidence
against affiliation in the valuation draws of two objectstioe same bidder.

de Castrg2007 has noted that, within the private-values paradigm, affdin is unnecessary to guarantee
the existence and uniqueness of a MPSE. In fact, he has deatedsexistence and uniqueness of a MPSE
under a weaker form of dependence, one where the inversedneta is decreasing in the conditioned
argument.

Because affiliation is unnecessary to guarantee existante@igueness of bidding strategies in mod-
els of first-price auctions with private values, expectegeneie predictions based on empirical models in
which affiliation is imposed are potentially biased. Knogviwhether valuations are affiliated is central
to ranking auction formats in terms of the expected revemgeeerated. In the absence of affiliation, the
expected-revenue rankings delivered bylthkage principleof Milgrom and Webef1987 need not hold:
the expected-revenue rankings across auctions formatimem empirical question. Thus, investigating the
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empirical validity of affiliation appears both an importamd a useful exercise.

In next section of this paper, we present a brief descriptioaffiliation and its soldier—total positivity
of order two (TR). Subsequently, following the theoretical workd¥ Castrg2007, 2009, who introduced
the notion of the grid distribution, in section 3 we constractractable empirical model of equilibrium
behaviour at first-price auctions when the private valuetiof bidders are potentially dependent, but not
necessarily affiliated.In section 4, we develop a test of affiliation, which is basedgdd distributions,
rather than kernel-smoothing methods, thus avoiding thevdack encountered hyi et al. [200Q 2003,
while in section 5, we conduct a small-scale Monte Carlo testigate the numerical as well as small-
sample properties of our proposed test. In section 6, weyappl methods in an empirical investigation of
low-price, sealed-bid, procurement-contract auctiorid hg the Department of Transportation in the State
of Michigan, and do not reject the null hypothesis of affibat

This information is potentially useful to a policy maker.erapparent high degree of estimated affiliation
also explains why low levels of observed competition arero&ufficient to maintain relatively low profit
margins: strong affiliation is akin to fierce competition.dén strong affiliation, a potential winner knows
that his nearest competitor probably has a valuation (adete to his, and this disciplines his bidding
behaviour: he becomes more aggressive than under independile summarize and conclude in section 7,
the final section of the paper.

2. Affiliation and TP,. As mentioned above, affiliation is often described usingxangle with two
random variables that can take on either a low or an high vdlbe two random variables are affiliated if
high (low) values of each are more likely to occur than higt Emv or low and high values. A commonly-
used graph of the four possible outcomes in a two-biddei@ugame with two values is depicted in figure
1. The(1,1) and(2, 2) points are more likely than th&, 1) or (1,2) points. Lettingp;; denote the probability
of (i, j), affiliation in this example then reduces tosFRviz.,

P11P22 2> P12P21.

Put another way, TPmeans that the determinant of the matrix

pP— <p11 p12>
P21 P22

must be weakly positive. Independence in valuations olsljosatisfies the lower bound on this determi-
nental inequality. Note, too, that affiliation restrictstiibutions to a part of the simplex depicted in figure
2. In that figure, it is the region of the simplex that appeailswe semi-circle rising from the line where
p11+ p22 equals one. In order to draw this figure, we needed to impasengry, sopi2 andpy; are equal;
thus, the intercept fops2 is one half. Conditions that are weaker than affiliation, thatt also guarantee
existence and uniqueness of equilibrium, are depicted urdig, too. In fact, in this simple example, the
entire simplex satisfies these weaker conditions. In rielamples, however, it is a subset of the simplex,
but one that contains the set of affiliated distributionsu§;lthe assumption of affiliation could be important
in determining the revenues a seller can expect from a péatiauction format.

Slavkovic and Fienber§2009 have discussed geometric representations>of2listributions, like some
of those considered here. Their representations are baséstrahedrons, while ours reduce to triangles
because of symmetry.

1The grid distributions discussed and used in this paper ank® modelled as contingency tables, which have been used ex
tensively in applications in the social sciences; Beeglas et al[199( for the connections between contingency tables and pesiti
dependence properties, including affiliation ¢J,Rvhich is the focus of this paper.
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FiG 1. Affiliation with Two Bidders and Two Values for Signals
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FIG 2. Probability Set: Affiliation and Alternative
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FiG 3. Affiliation with Two Bidders and Three Values for Signals

Another important point to note is that affiliation is a glbbastriction. To see the importance of this
fact, introduce the valuation 3 for each bidder; five addiiopoints then appear, as is depicted in figure
3. Affiliation requires that the probabilities at all collents of four points satisfy TP i.e., the following
additional six inequalities must hold:

P12P23 2> P13P22, P22P33 = P23P32, P21P32 > P22P31,
P11P33 > P13P31, P12P33 > P13P32, andpz21P33 > P23pPai.

Of course, symmetry would imply thaf; equalp;; for alli andj, so the joint mass function for two bidders
and three valuations under symmetric affiliation can betamias the following matrix:

P11 P12 P13 a d e
P=|p2 P22 pP23|=1|d b f
P31 P32 Ps3 e f ¢

where the determinants of g x 2) submatrices must be positive. Note, too, that all the pomist also
live on the simplex, so

0<ab,cd,e f<landa+b+c+2d+2e+2f =1

How many inequalities are relevant? Let us represent theeatmatrix in the following tableau:

1 2 3
a d e
d b f
e f c
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where the row and column numbers will be used later to defingifi@ualities. There ar(ag) X (g) or
nine possible combinations of four cells—i.e., nine inedigs. However, by symmetry, three are simply
duplicates of others. The following tableau representeféatie inequalities:

1,2) (1,3) (2,3)
(1,2) | ab>d? | af>de | df>be
(1,3) | af>de ac> € dc>ef
(2,3) | df >be | dc>ef bc> f2

where(i, j) x (¢,m) means form a matrix with elements from rowand j and columng and m of the
first tableau. Observe that when the three inequalitieslibigied in bold are satisfied, all others will be
also satisfied. In fact, the inequalityl,3) x (1,2) : af > de derives from(1,2) x (1,2) : ab> d? and
(2,3) x (1,2) : df > be Finally, inequality(2,3) x (1,3) : dc > ef derives from the other two, previously
established—viz(2,3) x (1,2) : df > beand(2,3) x (2,3) : bc> 2. All other inequalities can be obtained
from the adjacent ones in this fashion.

Adding values to the type spaces of bidders expands the nuofildeterminental restrictions required
to satisfy TR, thus restricting the space of distributions that can ber&ihed. Likewise, adding bidders
to the game, particularly if the bidders are assumed synitnetso restricts the space of distributions that
can be entertained. For example, suppose a third biddededdadne who is symmetric to the previous two.
The probability mass function for triplets of valuég,v,,vs), wherev, = 1,2,3 andn = 1,2,3, can be
represented as an array whose slices can then be reprebgrtesifollowing three matrices for bidders 1
and 2, indexed by the values of bidder 3:

a d e d b f e f c
Pp=|d b f],P,=|b h g|],andP3=|f g i].
e f ¢ f g i c i j

In general, if the number of biddersisand the number of valuesksthen, without symmetry or affiliation,
probability arrays havékN — 1) unique elements. Alsale Castrd2009 has shown that symmetry reduces
this to (N, %) elements, while affiliation restricts where th¢§&", *) probabilities can live on the simplex
via the determinental inequalities required by,TPor it well-known that a function is MTP(affiliated), if
and only if, it is TR in all relevant collections of four points. As an aside, irstthree-by-three example,
only nine constraints are relevant—viz.,

ab>d? bc> 2, df > be dh>b? hi>g? bg> fh, eg> 2, gj>i? andfi > cg.

If these hold, then the remainder are satisfied, too. Knowiegnaximum number of binding constraints is
relevant later in the paper when we discuss our test statisti

Consider now the randoM-vectorV which equalgVi, ..., VW), having joint density (mass) functiofy
with realizationv equal to(vy,...,vy). Affiliation can be formally defined as follows: for allandV/, the
random variable¥ are said to be affiliated if

fv(vv \/) fv(V/\\/) > fv(v) fv(\/)

where
(VVV) = [max(vy,Vvy), max(Vz, V), . ..,max(vn, vy )]
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denotes the component-wise maximavaindv', sometimes referred to as tjmn, while
(VAV) = [min(vy,V}),min(Va,V5), ..., min(vy, Vi )]

denotes the component-wise minima, sometimes referresittteaneet

3. Theoretical Model. We develop our theoretical model within the private-valpasadigm, assuming
away any interdependencies. We consider afgenf bidders{1,2,...,N}. Now, biddern is assumed to
draw V;, his private valuation of the object for sale, from the ctbéeterval [v,V]. We note that, without
loss of generality, one can reparametrize the valuaticms fv, V] to [0,1]. Below, we do this. We collect
the valuations in the vectorwhich equals(vs,...,vy) and denote this vector without thé' element by
V_p. Here, we have used the now-standard convention that wgserietters denote random variables, while
lower-case ones denote their corresponding realizatido®, too, thav lives in [0, 1]N.

We assume that the values are distributed according to timapiiity density functiorfy : [0,2]N — R,
which is symmetric; i.e., for the permutatia@n: {1,...,N} — {1,...,N}, we havefy(vi,...,vn) equals
fv (V(1);- - > Vo(n))- Letting fn(vn) denote the marginal probability density function\Gf we note that it
equalsfol---fol fv(V_n,Vn) dv_p. (Below, we constrain ourselves to the case wHg(e is the same for all
n, but this is unnecessary and done only because, when we oapply the method, we do have not enough
information to estimate the case with varyifigs.) Our main interest is the case whinis notthe product
of its marginals—the case where the types are dependent. kiéedithe conditional density &f _, given
vy by

fv (an,Vn)
fV,n‘Vn (V,n|Vn) fn(Vn)
Finally, we denote the largest order statisti®/of, givenv, by Z, and its probability density and cumulative
distribution functions byf (zy|vn) andF (z,|vn), respectively.

We assume that bidders are risk neutral and abstract frorseaviee price. Given his valug,, biddern
tenders a bid, € R If his tender is the highest, then biddewins the object and pays what he bid. A pure
strategy is a functioo : [0, 1] — R which specifies the bid (v,) for each valuer,. The interim pay-off of
biddern, who bids, when his opponents follow : [0,1] — R, is

o~ Y(sn)
M 50.0) = (=) [ (znlvn) G = (v — 50)F [0~ () vl
v
We focus on symmetric, increasing pure-strategy equaliiPiSE) which are defined loy: [0,1] — R such
that
M[Vn,0(Vn),0-n] > M(Vh,S,0-n) V'S, Vn.

As mentioned above, in most theoretical models of auctioaisadmit dependence in valuation draws, re-
searchers have assumed thatatisfies affiliation. We do not restrict ourselvedyas that satisfy affiliation.

We assume only théft; belongs to a set of distributior®which guarantees the existence and uniqueness of
a MPSE. This se® was fully characterized bgle Castrd200§ in the particular case of grid distributions,
which are considered in our Assumptiéri, below.

Let C denote the set of continuous density functidps [0, 1]N — R, and let4 denote the set of affiliated
probability functions. For convenience and consistendi wie notation used in later sections, we include
in 4 the set of all affiliated probability functions, not just tbentinuous ones. Endo@ with the topology
of the uniform convergence—i.e., the topology defined by thremof the supremum

[fvl = sup [fv(v)].
ve[0,4N
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Let D be the set of probability functionf, : [0,1]N — R, and assume there is a measuwver it.
We now introduce a transformatiaff : © — D which is the workhorse of our method. To defiHe let
I:[0,1] — {1,2,...,k} denote the function that associates/te [0, 1] the ceiling[kv]—viz., the smallest

integer at least as Iarge kg Thus, for eaclv € [0,1], we havev € ( W=t K )} Similarly, letS(v) denote

the “square” (hypercubef)]n=1 (%, (k)} wherev collects(vy, Vv, ..., w) € [0,1]N. From this, we define

T : D — D as the transformation that associates to elgch 9 the probability density functio( fy)
given by:

k _
TH(fy ) (v) = kN /S(V) fu (U) du.

Observe that®(fy) is constant over each squgmgl_; (—‘1, %} for all combinations ofn, € {1,...,k}.

The termkN above derives from the fact that each squyape,

/_\

o=t k} has volume1/kN). Note that for

all probability density functiondy € D, TX(fy)(v) equals one for aW < [0,1]N; i.e., T*(fy) is the uniform
distribution on[0, 1]N.
N times
. . . . ’_/_\
We now need to introduce a compact notation to representsaofadimensiork x k x - - - x k. We denote

by M K the set of arrays and B#?] an array in that set. When there are but two bidders, an arcdvisusly
just a matrix. In the application of this model to field datdieth we describe in section 6| is three. The

(i1,i2,...,in)" element of an array is denoté@ (i, iz, ..., in), or [P](i) for short, wheré denotes the vector
(i1,i2,...,in). Now, I(v) =i if ve (2, L]. Thus, fork € N, we define the finite-dimensional subspace
DK Das

_ {f\, eD:3[P e M, fy(v) = [P][I[(vl),...,]I(VN)]}.

Observe thatDX is a finite-dimensional set. In fact, whéhis two, a probability density functiofi, € DX
can be described by (& x k) matrix P as follows:

fu (vi,v2) = [PI(0, ) if (va, Vo) € ( ;1 L] x (“klﬂ 3.1)

fori, j€{1,2,...,k}. The definition offy at the zero measure set of poifits1,v2) = (fz’ ik) i=0o0rj=0}
is arbitrary.

Note, too, that the width of the cells can be allowed to vaogy.dxample, one might be®wide, while the
next one can be.@ wide, the third Ol wide, the next @5, and the last.Q5. In fact, the transformation can
be defined in terms of rectangles, instead of squares as.alieistrate this, consider again the symmetric
case and introduce figure Let O0=rg <r; <rz; <... <rx_1 < I = 1 be an arbitrary partitioning of the
interval [0, 1]. Now, definel: [0,1] — {1,2,...,k} byI(v) = j if and only ifve (rj—1,rj]. DefineB(v) as the
rectangle (box) wherecollects(v, ..., w) € [0,1]N lies. ThusB(v) = |‘|n 1(Vrvg)— 1,rﬂ(\,n)] Now, define

Jow) W(u) du

W ==

The following theorem was proven lae Castrd2007:

THEOREM 3.1. Let {2 be a symmetric and continuous probability density functitghis affiliated if
and only if for all k, T (£0) is also affiliated.
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FIG 4. Symmetric Non-Equi-Spaced Grid

In our notation,
lcaeT(fd) e vkeN

or
4= NenT3* (ﬂlﬁ Q)k> .

Why is this important? Well, in many applications, the setygdrcubes defined by a largevill have many
empty cells, which causes problems in both estimation afelénce. Thus, one may want to subdivide the
space of valuations irregularly, but symmetrically, asstrated in figurél whenN is two.

4. Test of Affiliation. The key result fromde Castrd2007 that allows us to develop our test of sym-

metric affiliation is the following: if the true probabilitgensity functionf{,’ exhibits affiliation, therrk (f\‘}),

a discretized version of it, will too. (See Theor@m, above.) To the extent that the grid distribut (f\(,))

can be consistently estimated from sample data, one canebienwhether the estimated grid distribution ex-
hibits affiliation. Of course, sampling error will exist,ttpresumably one can evaluate its relative importance
using first-order asymptotic methods.

Consider a sequence fauctions indexetl=1,..., T at whichN bidders participated by submitting the
NT bids{{s«}N_, }{_;. We note that affiliation is preserved under a monotonicsfiamation, so examining
a discretization ogg(s), the true probability density function of bids under the byesis of expected-profit
maximizing equilibrium behaviour, is the same as examirfijiy). Of course, neithef? nor g2 is known.
One can, however, construct an estimat&!pfg2) on the interval0, 1N by first transforming the observed
bids according to

Snt—S

Unt = — n=1...,Nandt=1,...,T
S-S

wheresis the smallest observed bid asid the largest observed bid, and then by breaking-up thisttye
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into L(= kN) cells and counting the number of times that a particMduple falls in that cel?. Now, the
random vecto¥, which represents the number of outcomes that fall in eatfeodells and equals the vector
(Y1,Y2,...,Y0) ", follows a multinomial distribution having the joint praitity mass function

T! L Ve
m = 71 !T[
gY(y| ) leyLI B 4

whereTy equals PfY; =y,), withy, =0,1,..., T, while Ttcollects(r, ..., 1) and lives on the simplex—
viz., the set
SL={mn>0,, 1/ n=1}

with 1. being an(L x 1) vector of ones. Note, too, thaty equalsT, the number of observations.
For¢=1,...,L, the unconstrained maximum-likelihood estimates ofrifeeare thely,/T)s. To test for
affiliation, maximize the following logarithm of the likélood function (minus a constant):

L(m) =y log(m)

subject to

1) the vectortlies in the simplexs; ;
2) all of the determinental inequalities required for, THdId.

Then compare this value df with the unconstrained one.

While the determinental constraints required for HPe convex sets of the parameters when the subma-
trices are symmetric, they are not for general submatridesiever, by taking logarithms of both sides of
any general determinental inequality

ab> cd,

one can convert this into a linear inequality, which doeg gise to convex constraint sets, albeit in variables
that are logarithms of the original variables. To wit,
loga+logb—logc—logd >0

defines a convex set (in the transformed variablesilog,logd). Of course, the adding-up constraint for
the simplex must be finessed—e.g., by considering the fatigwi

exp(loga) + exp(logb) + exp(logc) +exp(logd) +... < 1,

which gives rise to a convex set. Thus, the problem is almtisear programme.

For knownN and fixedk, the specific steps involved in implementing the test in phizblem are the
following. First, form the grid distribution of the joint deity as the unknown arrdf]. Letting [E] denote
the array of counts for the grid distribution, the logaritiminthe likelihood function for this multinomial

process is
> [E](i)log{[P](i)}. (4.1)

2We know that the support @ is strictly positive ato®(v), the true upper bound of support of bids, and we assumeffhist
strictly positive atv, sogg is strictly positive a®(v), the true lower bound of support of bids. Consequently, #mepe estimators of
the lower and upper bounds of support®donverge at raté&, which is faster than the rate of convergence of sample agsragpate
V/T. Hence, when using sample averages in our estimation, we rareithis first-stage, pre-estimation error—at least undstedrder
asymptotic analysis.
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Now, the following inequalities must be met:

log{[P](i)} < 0 and’ exp(log{[P](i)}) < 1, (4.2)

while symmetry requires the following linear restrictions

[PI(i) = [PI[¢(1)] (4.3)
whered(-) is any permutation, and affiliation requires the followirgferminental inequalities:
[PI(Vi)[PI(i AT")
I @4

hold. A test of affiliation, within a symmetric environmeityolves comparing the maximum of equation
(4.2), subject to the constraints id.Q) and @.3), with the maximum of equatior(1), subject to the con-
straints in 4.2), (4.3), and @.4).

Our test of symmetric affiliation is based on the differenetngen the maximum of the logarithm of the

likelihood function £([P]) and the maximum of the logarithm of the likelihood functiomder symmetric
affiliation £([P]). Obviously, the sampling theory associated with the diffiee in these two values of
the objective functionZ is not straightforward because not all of the inequality stoaints required by
MTP, may hold and, from sample to sample, the ones that do holdt@mge, but we shall suggest several
strategies to deal with this, below.

Experience gleaned from other models with a related streete.g. Wolak[1987 19893ab, 1997 as well
asBartolucci and Forcin§200(, who investigated MTR in binary models—suggests that the likelihood
ratio (LR) statistic . 3

2[L([P]) = L([P])] (4.5)

is not distributed according to a standgfdrandom variable.
Introducing ve¢P] as a short-hand notation, for thevector created from the arrdl], our constrained-
optimization problem can be summarized in a notation sinbddhat of Wolak (1989b) as:

max y'log(vedP]) subjectto h(vedP]) > 0,
ve

whereh : Rt — R is the function representing all relevant constraints whe®< L andL is the total
number of variables under the alternative hypothesis.€Her notational parsimony, we have ignored the
adding-up condition, which is implicit.)

ConsideNs(vedPY]), a neighbourhood of the true value Yi8Y. Denote byH (vedP?)) the matrix of par-
tial derivatives whos€, j)-element ism’%gﬁ]). Now, let us define the sét = {vedP] : H(vedP°])vedP] >

0, vedP] € R-}. Denote byr(vedP?)) Fisher’s information matrix which is defined by
922(vedP)) ]

. 71 et St S VA
fim T Fpo dvedPlavedP]T

evaluated at vgB?]. Finally, denote by
N° = H(vedP)) 1(vedP®]) ~*H(vedP®]) "

the variance-covariance matrix bfvedP]) and byw(j,J — j,MN°), the probability thaj constraints bind,
that(J — j) constraints are strictly satisfied; i.e., they are nonligdiVe have the following:
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THEOREM4.1. Consider the local hypothesis testing problem

Ho : h(vedP]) > 0;vedP] e N5(vedP?))
H1 : notHp.

The asymptotic distribution of the likelihood-ratio stit satisfies the following property:

J
SUp Pripoy 1vegpo))-1(D = €) = Pripoy (D =€) = EDPV(WJ' > c)w(j,d— j,M°).
beB =

where D is the asymptotic value of the test statistic, whilésein independernt? random variable having
j degrees of freedom.

PrROOEF It is sufficient and straightforward to verify that the asgtions of Theorem 4.2 iWolak
[19890 are satisfied. O

Because this statistic depends on the unknown populatidmigtribution[P°], the statistic is not pivotal.
Kodde and Palnj1984 have provided lower and upper bounds for this test stafistitests of various sizes
and different numbers of maximal constraints.

According toWolak [19891, the best way to evaluate the weights is using Monte Cartwkition.
Wolak also offered lower and upper bounds for the probadiliabove (see his equations 19 and 20, p.215);
these bounds are based KWodde and Palnj1986. An alternative strategy would be to adapt the bootstrap
methods oBugni[2009 to get the appropriate p-values of the test statistic. éira strategy would be to
adapt the subsampling methods describe@ldlitis et al.[1999 as was done bjRomano and Shaikj2008.

4.1. Some Comparisons with Other Nonparametric Methodsshould be noted, too, that our proposed
estimation strategy involves nothing more than estimagimfpistogram using a special class of grifisott
[1992 p. xi] has argued that the classical histogram “remainaibst widely applied and most intuitive
nonparametric estimator.” In other words, the proceduop@sed here is not based on any unfamiliar con-
cepts. Of course, there are more statistically efficientws, but they also have limitations,&sott[ 1999
has discussed. Also, although the rate of convergence tigh&m estimation is slow, it is still reasonable;
seeScott[1992 Theorem 3.5, p. 82].

Note, too, the similarities between grid-distribution dretnel-smoothed estimators. Kernel-smoothed
density estimators are well-behaved and have good ratemeémyence when the probability density func-
tions to be estimated are continuously differentiable® The setC! is dense in the set of all probability
density functions. Similarly, grid distribution estimadcare well behaved for probability density functions
in D = UY_, DX, which is also a dense set in the set of all probability dgrfsitctions* While C* proba-
bility density functions form a familiar and well-known el probability density functions, the probability
density functions inDK are also familiar because they are just (a special classmfjls functions, which
are fundamental, such as in the definition of the Lebesgegrat When estimating grid distributions, one
has to choose& or, equivalently, the size of the bii1/k), which is nothing more than the bandwidth of the
grid-distribution estimator. Similarly, kernel-smoathirequires a choice of bandwidth parameter, too. In
sum, nonparametric estimation using either grid distidng or smoothed kernels is very similar.

SMethods exist that require fewer smoothness conditions—tag function need just be continuoG8; others require additional
smoothness;2 or higher. This does not change our claims.
“Recall thatDX is the set of grid distributions where the interval is sulititd intok intervals; i.e.,DK = T*(D).
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4.2. Consistency and Power of the Proposed Te§f course, one concern is thagppears fixed in our
analysis, bufl is increasing, so our test is potentially inconsistent. YWagine a sequence ¢kr} with
values increasing &b increases, but not as fast &s Below, we discuss in detail what we have in mind.
Another worry is that the test statistic will be ill-behaviédcks tends to infinity. Thus, an upper bouid
must exist. This discussion leads us to introduce the faigyssumption concernin@ which allows us to
side-step these technical problems:

ASSUMPTION4.1. The true data-generating proces\g i a grid distribution; i.e., there exists € N
such that § € D,

As the discussion above made clear, this assumption isasitailthe assumptions of smoothness con-
cerning f0 which kernel-smoothing methods require. In addition t tanalogy, we offer two additional
justifications for Assumptiod.1

First, the set of grid distributions is dense in the set ofisflributions: even if the data-generating process
(DGP) f\S’ were not a grid distribution, there is a grid distributioatis arbitrary close to it. To wit, no finite
amount of data could reject Assumptidrl. In this sense, Assumptighlis almost “no assumption.”

Second, the DGP in question is a distribution of values, tiie discrete (up to, say, dollars or cents
or Yen or Won or whatever units one wants). When one assumesatisiprobability density function, one
is making an approximation, for computational conveniesceh an approximation does not seem, to us
at least, any more appealing than the one we make. On theacgritrseems more natural to us to assume
simple probability density functions rather than any srhaess conditions. In general, smoothness is just
a tool used to lighten the burden in the technical analysesdirticular problem. In our case, by assuming
that the distribution is simple (i.e., a grid distributipme can stay closer to reality.

Under Assumptiod.1, our test is consistent. For Assumptibrid implies that & exists such thatf,J € DX,
Therefore, the number of inequalities required for afitiatremains fixed. We are then in the standard
framework considered by Wolak, which has a fixed set of inktig® Thus, consistency follows directly
from Wolak'’s research. A technically sophisticated reautery feel that our consistency result is trivial,
once Assumptiod.lis made. The point of this paper (and this subsection, inquéar) is not to provide a
technical proof of consistency, but rather to remove anybtlkoaoncerning the consistency of our test under
a reasonable assumption.

The power of the proposed test clearly depends on the chbic&\erek chosen to be one (i.e., a uniform
distribution on theN-dimensional hypercube), then affiliation would never ead. On the other hand,
given a finite sample of observations, a largewill result in many cells having no elements. While the
choice ofk is obviously important and certainly warrants additiortedretical investigation, perhaps along
the lines of research in time-series analysisdyay et al[200§ concerning optimal adaptive detection of
correlation functions, it is beyond the scope of this papefact, in most applications to auctions, where
samples are often quite smatlwill be dictated by practical considerations—viz., the tigkasize ofT.

4.3. Bounding the Number of InequalitiesFor our test statistic to be well-behaved, it is important to
know that an upper bounds exists on the number of inequalfi@ arbitranN andk, assuming a symmetric
distribution, we can construct a bound on how many inegaalthere are. Because we focus on symmetric

distributions,
[89] (insizs-. . in) = [RO] (iL,i5- .- ,iN)

where(if,i5,...,iy) is a permutation ofi1,i»,...,in). Thus, we need only consider sorted indices, indices
(i1,i2,...,iN) forwhichi; >ip > --- >iN. Considef(is, iz, . . .,in), @ sorted index havingdifferent numbers;
letry,... r, denote the number of repetitions of the different numbe(sgim,, ...,in). Obviously,r1 +...+
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re = N. Using this notation, the number of permutationgigfiy, ... ,in) is then ———

index(4,3,3,2,2,2) hasl.2,3, or 120 different permutations.

Given the above, we can now focus our attention to sorted@sddnly. Consider the lexicographic order
of them. In this way, we can attribute an unambiguous natuatber to each sorted index of lendth
For example, consided = 3 in which case (1,1,1) corresponds to 1; (2,1,1), to 2; 2,20 3; (3,1,1) to
5; (3,2,2), to 7; and (4,1,1) to 11. It is important to develoypalgorithm to convert a sorted index into a
corresponding number, which we describe now.

First, let us define Nurfij,N) as the number of all indices that are weakly below (in theclegraphic
order) to the indexj, j,...,j); i.e., the index that hag in all positions and has lengtN. It is easy to
see that Nurfil,N) = 1, because there is just one index weakly be{dvd, 1,...,1):(1,1,1,...,1), itself.
Also, Num(2,2) = 3, becausél, 1), (2,1), and(2,2) are the sorted indices weakly beld&;2). Similarly,
Num(2,3) = 4, becaus€l,1,1), (2,1,1), (2,2,1), (2,2,2) are the sorted indices weakly beld®,2,2).
From this argument, it is not difficult to see that N@#MN) = N + 1. Observe, too, that Nufp, 1) = |,
because there are only the indexds, (2), ..., (j) weakly below(j). de Castrg 2009 has proven the
following:

,, r, For instance, the

LEMMA 4.1.  Num(j,N) = (Nﬁjfl)-

Thus, if we fix the number of biddeid and the number of intervals then there ar&1 = Num(k,N) =

(N:ﬁl) different indices. Affiliation will be satisfied if the cosponding inequality is satisfied for any
pair of indices(i,i’). Since there aréM) or ( palr of such indices, it is sufficient to tegtl> — M) /2

inequalities. Note, however, that this is an upper boundibbee some inequalities are implied by others.
The above discussion also provides some guidance congdroim to choose the inequalities; however, in
an effort to conserve space, we leave the discussion of Whanhtnimal set of sufficient inequalities is to
another paper.

4.4. Two Related Papers.Like us,Li and Zhang[200§ have examined some important economic im-
plications of affiliation. Instead of considering bids, rewer, Li and Zhang examined the entry behaviour
of potential bidders whose signals may be affiliated. Thisiies parametric analysis and they implemented
their test using simulation methods, examining timbersalganized by the Department of Forestry in the
State of Oregon. Li and Zhang found only a small degree ofatfih, perhaps because the zero/one entry
decision is not as informative as bid data.

Jun et al[2009 have developed a consistent nonparametric test designedtinuous data. By avoid-
ing discretization, Jun et al. presumably have more inféionathan we do. On the other hand, having
rejected affiliation with their test, it is unclear what to @ihin their framework because an alternative hy-
pothesis is unspecified. In contrast, our approach augniemtheoretical work ofle Castrd200g where
the alternative hypothesis is clearly outlined.

4.5. Policy Uses for Grid Distributions. de Castrd200§ has developed a complete theoretical treat-
ment of grid distributions, even in the absence of affiliatidis idea is as follows: first, assume ttigte DX
for somek; i.e, the DGP is a grid distribution—Assumptidnl holds. Standard estimation methods (his-
tograms) can be used to calculﬁ@e DX that best approxmaté;f,J

Under de Castro’s method, one can then test whéﬂjehas a symmetric MPSE. The method developed
by de Castro is exact: to wit, modulo sampling en[@ﬁ has a symmetric MPSE if and only if the method
detects it. Errors can occur only in simple numerical openatsuch as sums, divisions and square roots. It
turns out that determining the existence of a symmetric MBS®ntrivial when affiliation is absent.
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If [P] has a symmetric MPSE, then it can be used to calculate exbestenues under the first- and
second-price auctions, denotaﬁg] and R[Zﬁ,}, respectively. In this way, one can determine which auction

format yields an higher expected revenue[fjrand, also, the magnitude of the revenue differe(nRI?g] -
Rlﬁ,]), to decide whether it is significant.

[ ~
The procedure can then be repeated ufifigwhich is obtained under the constraint that the distrdyuti
satisfies affiliation. We know that, under affiliation, a sysetric MPSE exists and thaR[zf,] - R[lﬁ,]) >0, but

the method also allows one to decide whether the magnitidee difference$R[1ﬁ,} - %ﬁ]) and(R[zﬁ,] - R[Zﬁ])
are economically important.

Finally, the method allows one to examine sampling varighlly repeating the above procedures using
resampled draws frori#] or [P].

Thus, the grid distributions proposed in this paper haveynaivantages because a theory exists that
can be used for policy analysis. Such theories have not et Heveloped for the methods proposed by
Li and Zhang 200§ or Jun et al[2009; if affiliation is rejected under their methods, then whatio?

5. Monte Carlo Experiment. Below, we describe a small-scale Monte Carlo experimert ts@ves-
tigate the numerical as well as small-sample propertiesiofasting strategy. Our simulation study involved
samples of siz& equal 100 and 250 witN of three bidders; each sample was then replicaté@dtimes. In
all of the experiments, the building blocks were tripletenofependently- and identically-distributed uniform
random variables on the intervi@l 1]. We considered the following three types of experiments:

Sl) (U1,U2,U3) are independent uniform random variables;
SA) (U1,Uz,U3) are symmetric and affiliated random variables accordindp¢oRrank copula which has
the following generator function:

Z(u) = — log {W] , (5.1)
and inverse-generator function
)= félog(lJrexp(t)[exp(fa) -1)). (5.2)

where the parameter controls affiliation;
AN) (U1,U,U3) are negatively correlated random variables having thewvidtig correlation matrix:

10 -01 -02
s=|-01 10 -03|=FF"
-02 -03 10
where
—0.1000 09950 00000
—0.2000 —0.3216 09255

Above, S| denotes symmetric independence, which is thesletde case of affiliation when allof the
TP, determinants are exactly zero; SA denotes symmetric &filiawhich is the case when all of the P
determinants are positive; and AN denotes asymmetric fibatidn, which is the case when none of the
TP, determinental inequalities are satisfied.

( 1.0000 00000 00000)
F—



16 L.I. DE CASTRO AND H.J. PAARSCH

What interpretation can be given to the dependence param@tbr the bivariate case, the larger is a
positive value ofa, the greater the concordance, positive dependence. Orthbelwand, a very negative
value ofa indicates negative dependence. Independence obtainsavhpproaches zero. Note, however,
that whenN exceeds twoq is restricted to be positive because a negatiwgould mean a nonmonotonic
inverse-generator function of the Frank copula; see exam@?2, page 123 ihelsen[1999. The Frank
copula has the following\-variate form:

N .
Celu,....uy) = _é log (1+ Hf;;;[fxi() “‘i}L_ﬂ) a>0. (5.3)
Mueller and Scarsini2009 have characterized various notions of positive depenelesuch as MTE for

the Archimedean family of copulas, of which the Frank cogala member. They have also presented a
general condition that the generator of an arbitrary Argdean copula must satisfy in order to guarantee
that MTR, holds (cf. Theorem 2.11 in their pape§enes{1987 has shown that the relevant condition for
the Frank copula coincides with the condition that guamestemonotonic inverse-generator function when
N exceeds two; vizg must be positive. Genest’s condition requires that the -capula satisfy TRPas he
was only concerned with the bivariate Frank copula. As nosetil above, however, it is well-known that a
function is MTR if and only if it is TP in all pairs.

To simulate data from a Frank copula with affiliation, wedaled the approach describedlbyciano et al.
[2004. Theirs involvesconditional samplingvhere, initially,w;, aU (0, 1) random draw is taken, and then
u is set equal to it. The next (dependent) draw is taken f@fw,|u; ), andus is drawn fromCsz(ws|ug, Uz)
where all thew;s are independett (0, 1) draws. We implemented conditional sampling using the param
terization of the Frank copula given in equatidhd) in conjunction with the generator function defined
in equation §.1) and the inverse-generator function defined in equat®f).(Specifically, to generate
symmetrically-affiliated drawéus, up, us) from the trivariate Frank copula, we did the following:

1. simulate the independent random varialfles wy, ws) fromU (0, 1);
2. setu; equal tows;
3. usew, anduj to calculate

Up = _E <1+ WZ[l_eXFK_G)] ) : (54)

wolexp(—aup) — 1] —exp(—auy)

4. usews as well asu; andu, to define the following polynomial equation of order two irethariable
[exp(—aug) — 1]
ws = Dyllexp(—auz) — 1][exp(—a) — 1] x
(lexp(—a) — 1] + [exp(—auy) — 1][exp(—auy) — 1))

where
D, = ([exp(—a) — 1) + [exp(—auy ) — 1] [exp(—auz) — 1] [exp(—auz) — 1])2
which is then solved fous.
The above algorithm yields three symmetrically-affiliataddom draws from the trivariate Frank copula for
one simulation draw; this procedure was repeated eithepnd @60 times for each of,000 replications.

In figure5, we present a plot of all the points, whigris three and is 250, for one replication generated
under independence, weak affiliation. (Rememberoaof zero is the independent case.) Note that the
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FIG 5. Simulated Data Under Independenaes 0
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FIG 7. SI, SA, NA: k= 3, T = 100and T = 250

scatterplot looks as one would expect—uniform. In figbreve present a plot of all the points, whihis
three andr is 250, for one replication generated whers 2, which means only modest affiliation. Note, in
the scatterplot, a bit of white space exists in the extremeg—ear (01,1).

We solved the constrained nonlinear optimization problepecified by equationst(l), (4.2), (4.3,
and @.4) by implementing our methods using the programming langualyiPL; for additional details
concerning AMPL, seEourer et al[2003. Using AMPL has a number of advantages: first, its useriater
admits choice among a variety of nonlinear optimizatiorved, including SNOPT and MINOS, without
having to modify code significantly; second, AMPL can alsd@en automatic differentiation on nonlinear
programming problems; and, third, the language is freeatt, fusers can run the code for free using the
NEOS server online. The code for a representative estimgtioblem ran in around one second on an
unremarkable desktop computer.

In figure 7 are presented the frequency distributions of the LR tesisdts for SI, SA, and NA when
k is three andr is either 100 or 250. Our test appears able to distinguisdtively well between weak
and modest affiliation, and to detect nonaffiliation extrgnweell. The test has relatively high power in the
case NA, nonaffilation. Note, too, that &sincreases, the distribution of the test statistic underegiains
constant, the one under SA shifts to the left, and the onerddeshifts to the right.

For k of three andT of 100 with symmetric independence, one can calculate tHghtse{w(j,J —
j,no) ?=0 in Theoremd4.1 In figure8, we present the exact probability density function of thgngstotic
approximation as well as the kernel-smoothed estimategusia Monte Carlo data. The approximation
appears quite close to the actual process, suggestindnéhfitdt-order asymptotics are working quite well.

6. Empirical Application. Above, in section 3, in the tradition of the theoreticald#teire concerning
auctions, we developed our model of bidding in terms of \édna for an object to be sold at auction under
the first-price, sealed-bid format. Sealed-bid tender®ten used in procurement—i.e., low-price, sealed-
bid auctions at which a buyer (often a government agencysseefind the lowest-cost producer of some
good or service. In this section, we report results from apigoal investigation of procurement tenders
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for road resurfacing by a government agency. Although itédl-known that results from auctions can be

translated to procurement, and vice versa, sometimesrtrislation is tedious. We direct the interested
reader to the work ofle Castro and de Frut¢®rthcoming who have developed a procedure to translate
results from auctions to procurement.

We have applied our empirical framework to data from lowegrisealed-bid, procurement auctions held
by the Department of Transportation (DOT) in the State offijan. At these auctions, qualified firms are
invited to bid on jobs that involve resurfacing roads in Mgan. We have chosen this type of auction be-
cause the task at hand is quite well-understood. In additimre are reasons to believe that firm-specific
characteristics make the private-cost paradigm a reatoaabumption; e.g., the reservation wages of own-
ers/managers, who typically are paid the residual, can #angiderably across firms. On the other hand,
other features suggest that the cost signals of individidaldrs could be dependent, perhaps even affiliated;
e.g., these firms hire other factor services in the same markk thus, face the same costs for inputs such
as energy as well as paving inputs. For example, supposagaviauctiort has the following Leontief

production function for biddem:
Cnt = Min <h”t Yo Zm)

o’ & &
whereh denotes the managerial labour, whilendz denote other factor inputs which are priced compet-
itively at W and X;, respectively, at auction Assume thaR,, biddern’s marginal value of time, is an
independent, private-cost draw from a common distributioraddition, assume that the other factor prices
W andX; are draws from another joint distribution, and that theyiadependent oR,. The marginal cost
per mileCy; at auctiort can be then written as:

Cnt = OhRn + W + 5,X%,

which is a special case of an affiliated private-cost (APCdlehdknown as aonditional private-cosmodel.
The costs in this model are affiliated only when the distidoubf R, is log-concave, which is discussed



20 L.I. DE CASTRO AND H.J. PAARSCH

TABLE 1
Sample Descriptive Statistics—Dollars/Mile:=N3; T = 278
Variable Mean St.Dev. Median ~ Minimum Maximum
Engineer's Estimate  475,544.54  491,006.52 307,331.26 78#4% 3,694,272.59
Winning Bid 466,468.63 507,025.81 286,102.57 41,760.32883524.81

All Tendered Bids 507,332.42 564,842.58 317,814.77 41360 5,693,872.81

extensively inde Castrd2008§. Li et al. [200Q have studied this model, extensively. In short, the aféiia
private-cost paradigm (APCP) seems a reasonable null hgpist

We did not investigate issues relating to asymmetries adoaders because we do not know bidder
identities, data necessary to implement such a specific&®cause no reserve price exists at these auctions,
we treat the number of participants as if it were the numbgyaténtial bidders and focus on auctions at
which three bidders participated. Thus, we are ignoringtitential importance of participation costs which
others, includind.i [200, have investigated elsewhere.

The data for this part of the paper were provided by the MighiOT and were organized and used by
Hubbard et al[2009; a complete description of these data is provided in thaepdn tablel, we present
the summary descriptive statistics concerning our samip#84 observations—278 auctions that involved
three bidders each. We chose auctions with just three tsduronly to illustrate the general nature of
the method (if we can do three, then we canMjg but also to reduce the data requirements. When we
subdivide the unit hypercube inid' cells, the average number of bids in a cell is proportionakty/T).
WhenN is very large, the sample size must be on the ordé&Mah order to expect at least one observation
in each cell. This example also illustrates the potentialtitions of our approach; viz., even in relatively
large samples, some of the cells will not be populateds ®dll need to be kept small. However, one can
circumvent this problem by varying the width of the subdwis as we do below. Of course, one must then
adjust the conditions which define the determinental inkigsg We describe this below, too.

Our bid variable is the price per mile. Notice that both thamimg bids as well as all tendered bids vary
considerably, from a low of $41,760.32 per mile to a high of6$3,872.81 per mile. What explains this
variation? Well, presumbably heterogeneity in the tasks tieed to be performed. One way to control for
this heterogeneity would be to retrieve each and every aonénd then to construct covariates from those
contracts. Unfortunately, the State of Michigan cannovigl® us with this information, at least not any time
soon.

How can we deal with this heterogeneity? Well, in our casehaee an engineer’s estimgef the price
per mile to complete the projegtWe assume thak,, the cost to bidden at auctiont, can be factored as
follows:

Cit = A%(pr)ent (6.1)

whereA? is a known function. One example of this is
Cnt = Ptént.

Another is 5
Cnt = S0Pt “€nt.

50f course, besidep, it is possible that other covariates, which are common kndgéeto all the bidders, exist. If these other
common-knowledge covariates exist, then we could wronglyclcate that the signals have a strong form of correlation wiren
fact, the correctly-specified model of signals (conditionadhe common-knowledge information) would have only smallelation.
Unfortunately, we do not have access to any additional mé&tion. Were such information available, then we would caowlion it as
well.
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FIG 9. Data as well as NP, LS, and LAD Regressions: Logarithm of Batsus Logarithm of Engineer’s Estimate

Under equationq.1), the equilibrium bidBy; at auctiont for biddern takes the following form:

Bnt = A%(pt)B(ent).

SO B
nt
wo(py P

Of course, we do not knowP, but we can estimate’ either parametrically, under an appropriate assumption,
or nonparametrically, using the following empirical sgieeition:

logBnt = Y(pt) + Unt

wherey(p;) denotes-log[A°(pt)] andUy denotes lof(ent)].

Empirical results from this exercise are presented in fiduren this figure are presented results for
the nonparametric regression (NP), the least-squaresssgn (LS), the least-absolute-deviations (LAD)
regression. To get some notion of the relative fit, note thatR? for the LS regression is around9d.
The LS estimates of the constant and slope coefficients-&r&114 and 10268, respectively, while LAD
estimates of the constant and slope coefficients- #8221 and 10276, respectively.

Subsequently, we took the normalized fitted residuals, v(fiar the LS case) are depicted in figur@,
and applied the methods described in section 4 above koofatwo. Our test results are as follows: the
maximum of the logarithm of the likelihood function (minucanstant) without symmetry was442.50,
while the maximum of the logarithm of the likelihood funatioinder symmetry was-444.88, and under
symmetric affiliation it was alse-44488—a total difference of 388 At size Q05, twice the above differ-
ence is above the lower bound providedxydde and Palnil984, but below the upper bound, so the test
is inconclusive.

6The results for the LAD residuals were identical: the pralitgtarray obtained by discretizing the LAD residuals wasetly the
same as in the LS case because none of the fitted residualsasasiet! differently. This is not, perhaps, surprising gitlee similar
fits of the two empirical specifications.
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FiG 10. Scatterplot of Transformed Fitted LS Residuals

Because & of two is unusually small, we introduced a symmetric, butegprispaced, grid distribution—
like the one depicted in figur4, but with intervals|0.,0.4), [0.4,0.6), and[0.6,1.0]. The TR inequalities
can be derived in the usual way, but the adding-up inequatitgt be rewritten, in this case as

a+2b+8c+8d+ 16+ 8f +4d -+ 2h+ 4i + 4b+ 16f + 89+ 8e+ 29+ 8] + 8f + 16c+8i < 1.

Again, we applied our methods. Our test results are as fetlthe maximum of the logarithm of the like-
lihood function (minus a constant) under symmetry wa&l572, while the maximum under symmetric
affiliation was—71649—a difference of 7.” At size Q05, twice the above difference is below the lower
bound provided by Kodde and Palm, so we do not reject the hgsat of symmetric affiliation. To put these
results into some context, the centre of the simplex had ariitgn of the likelihood function 0f-916.24;
using the marginal distribution of low, medium, and hightsd6.4233 0.4808 0.0959 and imposing inde-
pendence yielded a logarithm of the likelihood function-af84.67.

7. Summary and Conclusions. We have constructed a tractable empirical model of eqiilibrbe-
haviour at first-price auctions when bidders’ private véhras are dependent, but not necessarily affiliated.
Subsequently, we developed a test of affiliation and theesitigated its small-sample properties. We ap-
plied our framework to data from low-price, sealed-bid &mg used by the Michigan DOT to procure
road-resurfacing: we do not reject the hypothesis of difiifain cost signals.

This information is potentially useful to a policy maker.érapparent high degree of estimated affiliation
also explains why low levels of observed competition arero&ufficient to maintain relatively low profit
margins: strong affiliation is akin to fierce competition.dén strong affiliation, a potential winner knows
that his nearest competitor probably has a valuation (@ste to his, and this disciplines his bidding
behaviour: he become more aggressive than under indepmnden

"The results for the LAD residuals were virtually identicéle probability array obtained by discretizing the LAD thsils was
almost the same as in the LS case.
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Our research has other policy implications, too. As memibabove, it is well-known that, under af-
filiation, the English auction format, on average, genearatere revenue for the seller than the first-price,
sealed-bid format. In procurement, under affiliation, aglish or a Vickrey auction would get the job done
more cheaply than the low-price, sealed-bid format, WeeeBhglish or Vickrey formats being used and
affiliation not rejected, then the procurement agency wdaigdustified in its choice of mechanism. What
remains a bit of a puzzle is why the low-price, sealed-bidratris used in the presence of such strong
affiliation. Perhaps, other features, such as the abilitheflow-price, sealed-bid auction format to thwart
collusion are important, too. Alternatively, perhaps ottments of the bid distribution, such as the vari-
ance, are important to the procurement agency.

On the other hand, had affiliation been rejected, then thesphares described in section 4 could be used
to determine which auction format would get the job done nebsaply, on average. Again, it is possible
that the English or Vickrey formats would still be preferrétany case, the methods described in section 4
permit a better understanding of the bidding differencédscivcan aid in choosing the best auction format.
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