Center for Economic Institutions Working Paper Series

No. 2020-5

"Gender Wage Gap in China: A Large Meta-Analysis"

Ichiro Iwasaki, Xinxin Ma

September, 2020

Institute of Economic Research Hitotsubashi University 2-1 Naka, Kunitachi, Tokyo, 186-8603 JAPAN <u>http://cei.ier.hit-u.ac.jp/English/index.html</u> Tel:+81-42-580-8405/Fax:+81-42-580-8333 CEI Working Paper Series No. 2020-5 September 2020

Gender Wage Gap in China: A Large Meta-Analysis[†]

Ichiro Iwasaki,^{a *} Xinxin Ma^b

^a Institute of Economic Research, Hitotsubashi University, Tokyo, Japan ^b Center for Far Eastern Studies, University of Toyama, Toyama, Japan

Abstract: This paper performs a meta-analysis of 1472 estimates extracted from 199 previous studies to investigate the gender wage gap in China. The results show that, although the gender wage gap in China during the transition period has an impact that statistically significant and economically meaningful, it remains at a low level. It is also revealed that the wage gap between men and women is more severe in rural regions and the private sector than those in urban regions and the public sector. Furthermore, we found that, in China, the gender wage gap has been increasing rapidly in recent years.

JEL classification numbers: D63, J31, J71, P25, P36

Keywords: gender wage gap, meta-synthesis, meta-regression analysis, publication selection bias, China

[†] This research work was financially supported by grants-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant Nos. b151403m; 20H01489; 20H01512) and the Joint Usage and Research Center of the Institute of Economic Research, Hitotsubashi University (Grant No. IERPK2013). We also thank Michie Kano and Eriko Yoshida for their research assistance and Tammy Bicket for her editorial assistance. Finally, we wish to express our deepest respect to the authors of the literature subject to the meta-analysis in this paper. Needless to say, all remaining errors are solely our responsibility.

^{*} Corresponding author: Naka 2-1, Kunitachi, Tokyo 186-8603, Japan; Tel.: +81-42-580-8366; Fax: + 81-42-580-8333; Email: iiwasaki@ier.hit-u.ac.jp

1. Introduction

The modern world faces serious inequality issues. China is no exception (Knight and Song, 1991; Li et al., 2017). As pointed out by the human capital theory of Becker (1964) and Mincer (1974), people are ready to understand and tolerate the existence of income inequality if it results from differentials in personal capability and/or efforts. However, if income inequality is due to highly unreasonable causes, for example discrimination, the inequality is likely to cause anger. In this sense, the gender wage gap, as suggested by the employer prejudice hypothesis (Becker, 1957), is likely to serve as a hotbed of social dissatisfaction.¹ It is, however, difficult to measure such unreasonable economic disparities through a simple comparison of male-female wage levels. Thus, economists conduct various econometric analyses aimed at testing whether a gender wage gap exists after controlling for a number of individual characteristics such as educational attainment, work experience, skill level, and health status, as well as employment conditions such as job types, industry sectors, and work locations. As a result, today we are able to refer to significant empirical evidence for developed countries (de la Sara et al., 2008; Blau and Khan, 2017; Hara, 2018), developing countries (Ahmed and McGillivray, 2015; Hallward-Driemeier et al., 2017; Deshpande et al., 2018), and former socialist transition countries (Brainerd, 2000; Majchrowska and Strawiński, 2018).

From the above perspectives, numerous researchers have attempted to investigate wage inequality in China focusing on the gender aspect (Meng, 1998ab; Gustafsson and Li, 2000; Liu et al., 2000; Maurer-Fazio and Hughes, 2002; Rozelle et al., 2002; Shu et al., 2007; Song et al., 2011; Ren and Miller, 2012; Ma, 2018a; Sun and Hung, 2018; Hare, 2019; Zhao et al., 2019). This may be caused by the fact that, since 1978, when the planned economic period ended, income inequality including wage gap in China has increased remarkably as the transition to a market economy has progressed. It is considered that the increase of income inequality may contribute to the growth of the gender wage gap. In addition, most other previous studies also have provided estimates of the effects of gender as one wage determinant.

However, taking an overview of these research results, some unresolved issues emerge: First, as we will report later in referring to **Table 1** and **Figure 1**, although the

¹ The employer prejudice hypothesis argues that, even if women and men are completely equal in terms of human capital, prejudice by employers, male employees, customers, and others leading to discriminatory treatment of women would result in gender wage disparities disadvantageous to women.

vast majority of the extant literature suggests that the gender wage gap, by which the wage level is disadvantageous to women, does exist in China, contrary results have also been reported. Second, although labor market segmentation by the Hukou (population registration) system is a major issue in the Chinese economy, research on wages in China strongly tends to limit the subject of analysis to either urban regions or rural regions (Ma and Iwasaki, 2020). As a result, gender wage gap differences between urban and rural regions are not sufficiently investigated. Third, a similar issue can be applied to gender wage gap differences between state-owned enterprises (SOEs) and privately-owned enterprises (POEs) as well. Fourth, since, due to restrictions in available data, the overwhelming majority of the published literature employs empirical analysis based on a cross-section data at either a single point or a number of points in time, few cases consider the dynamics of the gender wage gap from a long-term perspective. Accordingly, even though we can ascertain an unreasonable gender wage gap, which can serve as the soil of dissatisfaction in society and is an extremely important research issue not only for developed countries that are facing severe issues of inequality as well as China, which needs to secure the political and social stability of market-oriented reforms and economic growth, the disparities of the gender wage gap among regions and corporate sectors and dynamic time-series changes have been not analyzed in the majority of previous works regarding wage determinants in China.

A meta-analysis enabling the synthesis and comparison of empirical results reported in the extant literature can make it possible to obtain findings regarding issues and problems that are difficult to examine in just one study through standard empirical analysis. In this paper, we perform a large-scale meta-analysis to measure the gender wage gap in China, comprehending not only the empirical works of this subject but also a wide range of other Chinese wage studies concerning disparities of the gender wage gap among different regions and corporate sectors as well as changes over time, presenting "review-generated evidence" (Nakagawa et al., 2017). Furthermore, we also test publication selection bias and examine the presence of genuine empirical evidence of the wage effect of gender in the literature as a unique mission of meta-analysis. Other examples of meta-analysis of the gender wage gap include Stanley and Jarrell (1998), Jarrell and Stanley (2004), and Weichselbaumer and Winter-Ebmer (2005); however, each of these is an international comparison focused chiefly on developed countries. What's more, they were published at least 10 years ago. In addition, to the best of our knowledge, this is the first meta-analysis in the world on the gender wage gap in China. Therefore, this paper contributes to the literature of Chinese economic studies and metaanalysis of the gender wage gap.²

The results of meta-analysis using 1472 estimates extracted from 199 previous studies show that, although the gender wage gap in China during the transition period ³ has an impact that statistically significant and economically meaningful, it remains at a low level. It is also revealed that the wage gap between men and women is more severe in rural regions and the private sector than those in urban regions and the public sector. Furthermore, we found that, in China, the gender wage gap has been increasing rapidly in recent years.

The remainder of the paper is structured as follows: The next section presents hypotheses to be tested by meta-analysis. Section 3 describes the procedures used in searching and selecting the literature subject to the meta-analysis and overviews the selected studies. Section 4 conducts a meta-synthesis of the collected estimates. Section 5 performs a meta-regression analysis (MRA) of heterogeneity among studies. Section 6 tests for publication selection bias. Lastly, Section 7 summarizes the major findings from the meta-analysis and concludes the paper.

2. The Gender Wage Gap in China: Hypothesis Development

This section reviews the historical background of the market-oriented reforms and economic growth track in China from the latter half of the 1980s, when the Reform and Opening-Up policy (*Gaige Kaifang*) was enforced, to the present; it then proposes a set of testable hypotheses regarding the gender wage gap for meta-analysis.

During the mid-1980s, Deng Xiaoping's government advanced market-oriented reforms while maintaining a political dictatorship system controlled by the Communist Party of China. The Deng administration enforced the policy of allowing some regions/individuals to become rich faster than other regions/individuals as a fundamental principle of the Reform and Opening-Up policy, and some inequality was tolerated as a result. This represented a breaking away from the philosophy of absolute equality advocated during the era of Mao Zedong. Later, as is well known, China's economic

² There are several attempts to investigate the Chinese economy through meta-analysis of the existing literature. As these representative works, see Ljungwall and Tingvall (2015), Churchill and Mishra (2018), Fan et al. (2020), Ma and Iwasaki (2020), and Iwasaki et al. (2020).

³ The period from 1978 to the present is called as "the transition period" in most literature about the Chinese economy since, in December 1978, Deng Xiaoping announced the so-called "reform and opening-up" policy aimed at drastically reforming the national economy from a planned system to a market-oriented economy.

advancement would leap forward, spurred by the adoption of market mechanisms and large-scale opening up to the outside world; at the same time, income inequality grew markedly. In fact, according to Zhang and Zhao (2018), although the Gini coefficient in the early period of the Reform and Opening-up policy was at a low level of 0.20 or less, it began to rise in the 1990s and reached nearly 0.40 in 2000, then 0.50 in 2008, and more than 0.50 in 2009 and beyond.⁴ It is probable that this rapid increase in income inequality may significantly affect the gender wage gap. To understand the real state of the wage gap between male and female workers in China, we propose four hypotheses testable by meta-analysis to answer the following fundamental questions: (1) How large is the gender wage gap in China during the transition period? (2) Do any gender wage gap disparities between SOEs and POEs? (4) Does the advancement of market-oriented reforms affect the gender wage gap?

It is well known that, during the planned economy period (1949-1977), China emphasized gender equality as an important socialist ideology, and the government enforced it thoroughly by implementing equal employment policies and policies to promote women's labor participation, as demonstrated by the slogan "women hold half of the sky." Therefore, the gender gap in employment, wages, and occupation was much smaller in that era (Meng, 2000; Li and Song, 2013; Ma, 2018a). However, as noted above, since 2000, income inequality in China has expanded; the Gini coefficient was higher than 0.40—which is considered to be the warning level for social disorder. There is concern that the worsening income inequality may lead to dissatisfaction with and distrust of the government and social instability (Gu et al., 1995; Liu, 1999; Kettl, 2018).⁵ Therefore, since the 1980s, controlling wage levels to restrain income inequality

⁴ According to the National Statistics Bureau (NBS) of China, China's Gini coefficient reached a peak of 0.491 in 2008, then fell to 0.462 by 2015, 0.465 in 2016, and 0.467 in 2017 (https://www.ceicdata.com/zh-hans/china/resident-income-distribution/gini-coefficient).

However, Zhang and Zhao (2018) pointed out that the recent national census does not cover about 20% of the national income, which mainly consists of commercial and property income of the high-income class, and, therefore, the Gini coefficient based on the official statistics was seriously underestimated. The problem is also stressed by Li et al. (2017). Zhang and Zhao (2018) argued that, taking account of the existence of non-statistical incomes, the Gini coefficient in China after 2009 is likely to be underestimated by about 0.10 points.

⁵ According to an interview survey in 1989, when the Tiananmen Incident took place, the rate of individuals who answered "the expansion of income inequality may cause increasing social instability" reached about 40 percent in China (Gu et al., 1995; Liu, 1999).

has been an important topic regarding the Chinese economic policy. In that context, some measures have been enacted to limit the wage gap, including state intervention in the wage determination process in the public sector and administrative guidance in the private sector.

How effectively did the Chinese government restrict the wage gap between male and female workers? According to data of international comparison, using the percentage of female wages to male wages, the gender wage gap in China was estimated to be 82.7% in 2002 (Song et al., 2017), while the same indicator in 2015 stood at 81.1% in the USA, 82.3% in the UK, 81.3% in Germany, 88.0% in Sweden, 67.6% in Korea, and 72.2% in Japan (Japan Institute for Labor Policy and Training, 2016). These figures indicate that the gender wage gap is greater in China than in the Nordic social democracy countries but is much smaller than in family-oriented countries such as Korea and Japan and is almost the same as in most developed countries. It seems that the effects of the Chinese government's policies for controlling the gender wage gap in the planned economy period are in evidence here.

We should note, however, that the percentage of female wages to male wages does not capture real gender wage discrimination (i.e., unexplained wage difference between male and female workers), which is estimated after controlling for worker-level characteristics such as educational attainment, years of work experience, skill level, health status, and employment conditions such as occupation, industry sector, company ownership type, and location. Moreover, in China, as a developing country, the difference in men's and women's education and employment opportunities are likely to be higher than those in their developed counterparts. Therefore, we expect that, in the results of empirical studies, the gender wage gap in China is evaluated to be lower than that in developed economies.

As we will argue in Section 3, in the meta-analysis, for reasons of expediency, the size of an effect in question is used to delineate four categories: (a) economically insignificant effect, (b) small effect, (c) medium effect, and (d) large effect (Doucouliagos, 2011). According to Weichselbaumer and Winter-Ebmer (2005), the gender wage gap in developed economies is highly likely at a medium level. Based on the above arguments, regarding the level of the gender wage gap in China during the transition period, we propose the next hypothesis:

Hypothesis H₁: The wage effect of gender is small during the transition period.

In rural China, despite the ideological guidance of communism, tradition and

custom continue to strongly influence people's thoughts and ways of living. In fact, according to Cheng (2011) and Fen and Xiao (2014), there still remains deep-rooted social awareness, such as male predomination over women and the wisdom of "men for work, women for family" in rural regions even now; as a result, rural women face unreasonable discrimination in various aspects of economic and social activities. Hence, we surmise that, in company activities, discrimination against women is more severe in rural regions than in urban regions where female workers have greater freedom from the constraints of tradition and custom. On this point, rural regions in China do not differ greatly from those of other developing countries.

In China, however, there are special conditions in which the above circumstances are retained for a long period of time, that is the *Hukou* system and the development of township and village enterprises (TVEs). Since 1958, the Chinese government has implemented the Hukou system, which separates urban and rural regions to control the changes of residence. Under this system, moving from rural regions to urban regions is prohibited, and the migration of labor is strongly restricted. TVEs have developed to absorb the surplus laborers in rural regions under these institutional restrictions (Minami and Ma, 2010). During the 1980s, TVEs were operated as collective enterprises managed by people's communes, which is the lower-level state organization in the rural areas. In the 1990s, however, most TVEs were privatized. These privatized TVEs now play a strong role in business activities in rural economies, while the activities of SOEs, in which the impacts of gender equality policies enforced during the planned economy period are remarkably strong, are quite limited. From this perspective, it is worth paying great attention to the arguments of Meng and Miller (1995) and Meng (1998a,b) that closely link discrimination against female workers with the development of TVEs. Therefore, in respect to the difference in the gender wage gap between urban and rural regions, we predict:

Hypothesis H₂: The gender wage gap is greater in rural regions than in urban regions.

Many researchers have pointed out that the contemporary Chinese labor market is segmented by ownership types of companies into the public sector and the private sector (Dong and Bowles, 2002; Chen et al., 2005; Démurger et al., 2012; Ma, 2018b). Employment conditions for women are also distinguished in the same way. In the era of the planned system, the government strongly promoted gender equality in employment and wages in the entire public sector. In fact, as part of their welfare programs, SOEs strongly supported the continued employment of women with younger children, through

means such as successively opening nursery schools and kindergartens. As a consequence, the gender wage gap was controlled and small (Maurer-Fazio and Hughes, 2002; Hare, 2019). Such favorable employment treatments for women continue in the public sector even now and have served as an important motivation for highly educated women to seek jobs in SOEs in recent years (Liu, 2015).

As noted above, while the Chinese government has implemented a wide range of policies to control income inequality, SOEs actually play a major role in such measures. International comparison shows that SOEs in China continue to have a strong influence on wage levels as compared to developed counties in Europe and North America or to the former socialist states of Eastern Europe and the former Soviet Union. During the period of Reform and Opening-Up policies after 1978, POEs grew considerably in China. However, given strong maintenance of the one-party dictatorship system and the gradual reforms, the presence of SOEs in the national economy remains greatly. In fact, according to official statistics, in 2017, the proportions of gross domestic product (GDP) and tax revenue of SOEs to the total national amount are approximately 40% and 50%, respectively (NBS, 2018). Accounting for the fact that SOEs tend to obey the policies of the central government and the party to mitigate income inequality and the influence of the ideology of gender equality on the management of SOEs was maintained strongly even during the transition period, we assume:

Hypothesis H₃: The gender wage gap in SOEs is smaller than in POEs.

Unlike Russia and other Eastern European countries, China still maintains one-party dictatorship in the political sphere and enforces gradualism-based economic reforms. However, the influence of market mechanisms on the activities of companies and citizens is increasing day by day (Hare, 2018). As noted above, despite the policy efforts of the Chinese government, the nation's Gini coefficient is increasing steadily. There is no doubt that the remarkable growth of the private sector caused the significant expansion of income inequality. The question is whether the gender wage gap trend is similar to that of income inequality during the transition period.

In theory, the spread of a market mechanism could contribute to reducing the gender wage gap because, in a competitive market, companies should determine wage levels based on a worker's productivity, which may reduce the unreasonable wage discrimination against women. However, the growth of POEs in China may have the opposite effect. Namely, if hypothesis H₃ is right, then POEs would have a stronger tendency to discriminate against female workers than would SOEs. As pointed out above, although the public sector still makes great contributions to the creation of added value and tax revenues, the proportion of employees in the private sector to the total workers in urban regions had reached about 80% (NBS, 2018). Furthermore, with the progress of SOE reform, which promotes human resource management autonomy in SOEs, the influence of gender equality policies on the employment and wage decision-making processes in the public sector has been weakened. When discretionary power becomes stronger in the public sector, the organizational behaviors of SOEs would come to resemble those of POEs, and the gender wage gap is likely to increase in the SOEs as well. In China, from the latter half of the 1980s to the present, the rapid growth of POEs and the promotion of management autonomy in SOEs are likely to increase discrimination against female workers in both corporate sectors. Accordingly, we propose testing the following hypothesis regarding the time trend in the gender wage gap during the transition period:

Hypothesis H₄: *The gender wage gap increases during the transition period.*

In the following sections, we examine the above four hypotheses by performing a large-scale meta-analysis of the existing literature.

3. Literature Selection and Outlines of Selected Works for Meta-Analysis

This section first describes the procedure for searching and selecting literature suitable for testing the hypotheses proposed in the previous section and then outlines the selected studies for meta-analysis.

A very large number of empirical studies analyzed the wage determinants in China, and a large portion of these previous works employed gender as one independent variable in the wage function. Accordingly, we adopted a policy of searching and selecting literature by collecting as many empirical studies as possible on the wages in China and extracting estimates suited to the meta-analysis in this paper. More concretely, using the electronic academic literature databases of EconLit and Web of Science as well as the websites of leading academic publishers for English language literature⁶ and the Chinese National Knowledge Infrastructure (CNKI) database, which is the largest

⁶ They refer to the following six publishers: Emeraldinsight (https://www.emeraldinsight.com), Sage Journals (http://journals.sagepub.com), ScienceDirect (http://www.sciencedirect.com), Springer Link (https://link.springer.com), Taylor & Francis Online (https://www.tandfonline.com), and Wiley Online Library (https://onlinelibrary.wiley.com).

academic literature database in China for Chinese language literature, we first searched for relevant studies published from 1990 to June 2020. In these databases and websites, we carried out an AND search for article titles using "*China*" and "*wage*" as keywords, obtaining 212 English and 163 Chinese papers.⁷ Next, we closely examined the contents of these 375 studies and picked out those that actually examined the gender effect by estimating a wage function. As a result, we finally selected 90 and 109 studies in the English and Chinese languages, respectively.⁸

A breakdown of the 199 selected works by publication year shows that two papers (1.0% of the total) were published during the 1990s, 40 (20.1%) during the 2000s, 143 (71.8%) during the 2010s, and 14 (7.0%) in 2020, faithfully reflecting the growth of empirical analysis in Chinese economic studies in the last decade. This fact implies that the meta-analysis in this paper is largely based on empirical evidence generated from advanced econometric analyses in recent years. This is important for pursuing the true effect of gender on wage levels in China during the transition period.

To test Hypotheses H₂ and H₃ regarding the difference in the gender wage gap between urban and rural regions and between SOEs and POEs, it is essential to have empirical results in which the various types of regions and firms are analyzed separately. The selected studies fully satisfy this requirement.⁹ That is, 119 of the 199 works report estimates of a gender variable for urban regions, while 18 are limited to estimates for rural regions; similarly, 7 works focus solely on SOEs and 10 on POEs. Therefore, although the numbers of previous studies limiting their research subjects to rural regions or to specific ownership type of companies are small, this would not impede the examination of Hypotheses H₂ and H₃ by meta-analysis.

The selected studies are also useful for testing Hypotheses H_1 and H_4 , which concern the level of gender wage gap through the transition period and its time-series dynamics. This is true because the periods subject to research in these 199 works as a whole cover the 41-year period from 1978 to 2018, and the estimates can be obtained year by year.¹⁰

⁷ The final literature search was conducted in July 2020.

⁸ A bibliography of the 199 selected works is available in **Appendix B**

⁹ While interaction terms between a gender dummy variable and a regional or corporate-sector dummy variable could be subject to meta-analysis, the selected works included almost no such estimation results.

¹⁰ However, some variation is apparent by period among the empirical results available for use. In fact, the number of estimates on the gender wage gap in the 1980s and the first half of the 1990s averages only 10.7 per year, while the annual averages in the latter half of the 1990s, the 2000s, and the 2010s rose to 43.8, 68.9, and 52.0, respectively.

Since only nine of the 199 studies used panel data, the vast majority of estimates reported in the literature are empirical results concerning the gender wage gap in specific years. This fact is advantageous in testing hypothesis H₄.

From the 199 selected studies, we extracted a total of 1472 estimates. The mean (median) of the number of collected estimates per study is 7.4 (6). All of these are single-term estimates of gender dummy variables, of which 1165 are male dummy variables, while the remaining 307 are female dummy variables. ¹¹ In order to focus on discrimination against women in terms of wage level, this paper uses the reversed values of the estimates of male dummy variables together with the estimates of female dummy variables. In other words, the meta-analysis in this paper examines how much lower is the female wage than the male wage in China, *ceteris paribus*.

Further, in order to correspond to the difference in the units of estimation results in the selected studies, we employ the partial correlation coefficient (PCC) of a corresponding estimate in the meta-analysis. The PCC is a measure of the association of a dependent variable and the independent variable in question when other variables are held constant. When t_k and df_k denote the t value and the degree of freedom of the k-th estimate, respectively, the PCC (r_k) is calculated with the following equation:

$$r_k = \frac{t_k}{\sqrt{t_k^2 + df_k}}$$
, $k = 1, 2, ..., K. (1)$

The standard error (*SE_k*) of r_k is given by $\sqrt{(1-r_k^2)/df_k}$.

As the evaluation criterion of the correlation coefficient, Cohen (1988) suggested using the values of 0.10, 0.30, and 0.50 as cut-offs to distinguish a small effect, medium effect, and large effect, respectively. However, this criterion is set with a zero-order correlation that is the correlation coefficient with no control variables. It is somewhat strict in economics research in which a large number of control variables are usually employed in empirical studies. Therefore, Doucouliagos (2011) proposed 0.048, 0.112, and 0.234 to be the lowest thresholds of small, medium, and large effects, respectively, as the new general standard in labor economics research (ibid., Table 3, p. 11). In this paper, we evaluate the gender wage gap in China in accordance with this standard.

¹¹ Estimates of interaction terms of a gender dummy variable and other independent variables are not included in the meta-analysis in this paper. However, we examine how the simultaneous estimation of an interaction term(s) affects estimates of a single term of a gender dummy in the meta-regression estimation in Section 5.

4. Meta-Synthesis

A meta-analysis ordinarily consists of three steps: (1) meta-synthesis of collected estimates, (2) meta-regression analysis of heterogeneity among the literature, and (3) testing for publication selection bias (Iwasaki, 2020). We follow this standard procedure in examining the hypotheses on the gender wage gap in China. Accordingly, in this section, as the first step of meta-analysis, we synthesize 1472 collected estimates using their PCCs after observing their distribution.

Table 1 shows descriptive statistics of the PCCs of the collected estimates and the results of the *t* test and Shapiro-Wilk normality test, while **Figure 1** displays their kernel density estimations. To match the four hypotheses proposed in Section 2, both of these are presented not only for all studies but also for cases in which collected estimates are divided by target regions, corporate sectors, and periods. As described in the preceding section, in the meta-analysis, the reversed values of the estimates of male dummy variables are used together with the estimates of female dummy variables.

According to **Table 1**, the mean and median of the PCCs for all studies are negative, and Panel (a) of **Figure 1** shows a skewed distribution toward the negative side, with a peak at -0.10. In other words, the vast majority of empirical results reported in the selected literature indicate that there exists a gender wage gap disadvantageous to women in the Chinese economy. In fact, 1408, or 95.7%, of the 1472 collected estimates have a negative sign. Moreover, according to the Doucouliagos standard, 127 (8.6%) of these 1408 estimates show a large gender effect on wage, while 624 (44.3%) and 493 (35.0%) indicate medium and small effects, respectively, and the remaining 164 (11.6%) denote that the gender wage gap is insignificant. In sum, most of the collected estimates suggest that the wage effect of gender has an economically meaningful size in line with hypothesis H₁.

As seen in **Table 1** and Panels (b) and (c) of **Figure 1**, the distributions of collected estimates categorized based on target regions and corporate sectors also support both hypotheses H₂ and H₃. Actually, estimates related to the gender wage gap in rural regions and POEs are more heavily weighted toward the negative side than those in urban regions and SOEs. Similarly, a difference is apparent in the distributions of estimates by periods as well. In fact, in Panel (d) of **Figure 1**, estimates for the 2010s are more strongly deflected to the negative side than those for the 2000s and earlier, which corresponds with hypothesis H₄.

Table 2 reports the results of meta-synthesis. In this table, together with synthesis

results using the fixed-effect model and the random-effects model, synthesis also was conducted using the unrestricted weighted least squares average (UWA) method, which is less subject to influence from excess heterogeneity than the fixed-effect model and has less publication-selection bias than the random-effects model, and UWA synthesis of estimation results with statistical power of more than 0.80—that is, the weighted average of the adequately powered (WAAP) synthesis (Stanley and Doucouliagos, 2017; Stanley et al., 2017). As was the case with **Table 1** and **Figure 1**, **Table 2** also provides results specialized for each hypothesis. Since, in each case, a Cochrane Q test of homogeneity rejects the null hypothesis at a 1% significance level, and the l^2 and H^2 statistics also suggest the presence of heterogeneity in Column (b) of this table, in Column (a), the estimates of the random-effects model are adopted as reference values of the synthesized effect size. On the other hand, under the new UWA synthesis method, in Column (c) of **Table 2**, WAAP synthesis values, considered more reliable, are used as reference values for comparison with those generated by the random-effects model.

In the results of all studies, the random-effects model produced a synthesis value of -0.122, while WAAP estimation yielded a value of -0.092. According to the Doucouliagos standard, if the former shows the true effect size, then it could be said that the wage effect of gender in China would be of a medium size through the transition period, while if the latter is assumed as the true effect size, we could consider that the impact of gender on wage levels would be small. In this way, the traditional and new synthesis methods demonstrate different assessments of the effect size. Hence, we will make a final judgement regarding hypothesis H₁ referring to the test results of publication selection bias and the presence of genuine empirical evidence in the selected literature in Section 6.

On the other hand, despite the difference in meta-synthesis methods, the results in **Table 2** provide support for hypotheses H_2 and H_3 . In fact, both the random-effects and WAAP synthesis values indicate that the effect size of gender on wage levels in urban regions and SOEs is evaluated to be small, while, in rural regions and POEs, the wage effect of gender is considered to have a medium size. The difference between regions and corporate sectors is noteworthy for understanding the wage mechanism in China.

With regard to hypothesis H₄, both the random-effects model and the WAAP method produced results that the absolute value of the synthesized effect size tends to become larger from the early period to the current years. To back up these findings, we looked at changes over time in the scale of the gender wage gap through a more detailed subdivision of collected estimates. The results are shown in **Figure 2**. The slope of the

approximate line in this figure is estimated to be negative and statistically significant at the 1% level, and its coefficient implies that, as the average estimation period approaches the present time year by year, the gender wage gap increases by 0.0027 in terms of the PCC. As demonstrated in **Figure 2**, hypothesis H₄ is supported, even when the estimation period is divided into single-year units.

5. Meta-Regression Analysis

While the meta-synthesis of the previous section carried out explicit hypothesis testing by providing a point estimate of the wage effect of gender as a synthesized effect size, it has the drawback of largely excluding from consideration heterogeneity among the literature. Accordingly, this section verifies the reliability of the synthesis results through estimating a meta-regression model that controls simultaneously for various study conditions among the selected studies. More concretely, we estimate a meta-regression model in the form of:

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_{kn} + e_k$$
, $k = 1, \dots, K$, (2)

• •

where y_k is the PCC (i.e., r_k) of the *k*-th estimate, β_0 is the constant, x_{kn} denotes a metaindependent variable that captures the relevant characteristics of an empirical study and explains its systematic variation from other empirical results in the literature, β_n denotes the meta-regression coefficient to be estimated, and e_k is the meta-regression disturbance term. Following the guidelines of Stanley and Doucouliagos (2012), to check the statistical robustness of coefficient β_n , we performed an MRA using the following seven estimators: (1) the cluster-robust ordinary least squares (OLS) estimator, which clusters the collected estimates by study and computes robust standard errors; the cluster-robust weighted least squares (WLS) estimator using (2) the number of observations (*N*), (3) the square root of the degree of freedom($\sqrt{d.f.}$), or (4) the inverse of the standard error (1/SE) as an analytical weigh; (5) the multi-level mixed-effects RLM estimator; (6) the cluster-robust random-effects panel GLS estimator, and (7) the cluster-robust fixedeffects panel LSDV (least squares with dummy variable).

On the right-hand side of Eq. (2), in addition to the focused research attributes consisting of target region, corporate sector, and period, a series of variables are introduced to capture the differences in *Hukou* type, wage level percentile, survey data, data type, wage type, wage payment period, wage variable type, estimator, presence of control for selection bias, selection of control variables, estimation with an interaction

term(s), and standard error that also may affect the estimation results in the selected studies.¹² The names, definitions, and descriptive statistics of these meta-independent variables are listed in **Table 3**.

Table 4 reports the estimation results. As shown in this table, the signs and statistical significance of some meta-independent variables significantly vary with the choice of estimator. Thus, assuming that meta-independent variables that are statistically significant and have the same sign in at least four of the seven models constitute statistically robust estimation results, we test hypotheses H_2 to H_4 .

The estimation results in Table 4 indicate that differences in region, corporate sector, and period have a strong impact on the gender wage gap in China, and this finding is robust even after controlling for a series of study conditions from the Hukou type to the standard errors. First, the rural-region variable is estimated with a significant and negative coefficient in six of the seven models, indicating that, when all other conditions are constant, the gender wage gap in rural regions is higher than in urban regions within a range of 0.0402 to 0.0618. Second, while the public-sector variable shows a significant and positive coefficient in five models, the private-sector variable is insignificant in any of the seven models. These results can be interpreted that the gender wage gap is significantly smaller in SOEs than in POEs. Third, the average estimation year is estimated to be significant and negative in six models, and its coefficients imply that, as the estimation period approaches the current time year by year, the gender wage gap increases within a range of 0.0012 to 0.0031. This result is highly consistent with the estimation results of the approximate line in Figure 2. In sum, the results of metaregression analysis provide overall support for the synthesis results reported in the preceding section.

The estimation results in **Table 4** also make it clear that, in addition to differences in the target region, corporate sector, and period, wage percentile, wage payment period, control for sample selection bias, firm size, and location fixed effects generated systematic disparity in the empirical results of previous studies. These findings also serve as important hints for deeper understanding of the research outcomes on the gender

¹² While educational attainment is one of the most important determinants affecting wage levels, since nearly all of the selected studies controlled for this factor in their empirical analyses, the influence of control for this factor was not considered in the MRA in this section.

wage gap in China.¹³

6. Testing for Publication Selection Bias

As seen above, the results of both meta-synthesis and MRA support the hypotheses presented in Section 2. However, the reliability of these test results cannot be established if the selected studies did not contain genuine evidence due to publication selection bias. Publication selection bias occurs when either researchers, reviewers, or editors are inclined to publish research results that are consistent with the conventional view and/or are statistically significant; as a consequence, an effect in question tends to be overvalued in the research record (Iwasaki, 2020ab). Stanley and Doucouliagos (2012) pointed out that "the real problem of publication selection is not its existence, but the large biases that it can impact upon any summary of empirical economic knowledge, when uncorrected" (p. 52). Therefore, we should tackle this issue as one of the important missions of meta-analysis. Accordingly, as the final stage of the meta-analysis, this section tests for publication selection bias and the presence of the true effect. To this end, in addition to visual examination using a funnel plot, we conduct a funnel-asymmetry test (FAT), a precision-effect test (PET), and a precision-effect estimate with standard error (PEESE), which were proposed by Stanley and Doucouliagos (2012) and have been used widely in previous meta-studies.¹⁴

Figure 3 exhibits a funnel plot of all studies. In this figure, the collected estimates show a skewed distribution toward the left side, leading to suspicions there is a publication selection bias in the literature. Actually, if the true value is assumed to be zero, the ratio of positive to negative estimates is 64:1408; therefore, the null hypothesis that the number of positive estimates equals the number of negative estimates is strongly rejected (z=-35.0304, p=0.000). Even if the synthesis value of the random-effects model is assumed to be the true effect, the collected estimates are divided into a ratio of 779:693 with a value of -0.122 being the threshold, and the test of proportions rejects the null hypothesis (z=2.2415, p=0.0250). Furthermore, if we assume that the WAAP synthesis value presents the true effect size, then the collected estimates are distributed at a ratio

¹³ To tackle with the issue of model uncertainly, we performed supplement regressions using the Bayesian model averaging (BMA) and the frequentist check OLS model and confirmed that the key variables in **Table 4** shows robust estimates in these BMA and OLS models.

¹⁴ **Appendix A** describes the methodology of publication selection bias testing performed in this section.

of 902:570 on the left and right sides with a threshold of -0.092. As a result, the null hypothesis of proportional distribution is again rejected at the 1% significance level (*z*=-8.653, *p*=0.000). To sum up, both visual verification using the funnel plot and the univariate test results strongly suggest that publication selection bias is very likely to have occurred in this research field regardless of the differences in the assumptions of the true value of a gender effect on wage levels.

The results of the FAT-PET-PEESE test procedure are shown in **Table 5**. In Panel (a) of the table, the FAT rejects the null hypothesis that the intercept (γ_0) is zero for all five models. This result implies that the collected estimates lack funnel asymmetry due to strong publication selection bias. However, even in the presence of publication selection bias, there is a possibility that genuine evidence is available in the selected literature. As shown in Panel (a) of Table 5, the PET rejects the null hypothesis that the coefficient (γ_1) of the inverse of the standard errors (1/SE) is zero in all models, suggesting that the collected estimates do contain empirical evidence regarding the true effect size. Accordingly, looking at the results of the PEESE approach as reported in Panel (b) of the table, we confirm that, in all five models, the coefficients (γ_1) of 1/SEare estimated to be statistically significant and, therefore, the true value of the gender wage effect in China should be in a range of -0.0885 to -0.0797. The value of this publication-selection-bias-adjusted effect size is closer to the WAAP synthesis value (-(0.092) than the random-effects one (-0.122). This result agrees with the argument by Stanley et al. (2017) that, as compared with the traditional synthesis method, the WAAP method is much more robust from publication selection bias. From these results, we judge that, while the gender wage gap does exist in China, in accordance with the Doucouliagos standard, the gender effect has remained at a small level throughout the transition period. In other words, as the synthesis result based on the WAAP method does, the test results of publication selection bias and the presence of genuine empirical evidence strongly support hypothesis H₁.

We also carried out the FAT-PET-PEESE procedure separately by target regions, corporate sectors, and periods. The results, as well as those for all studies, are summarized in **Table 6**. As this table shows, the FAT detects publication selection bias in five of nine cases. However, the PET indicates the presence of genuine empirical evidence in all of these nine cases; furthermore, the PEESE method generates a statistically significant non-zero publication-selection-bias-corrected effect size in all cases. The estimated true effects for regions and corporate sectors definitely back up hypotheses H₂ and H₃. We also confirm that the size of the gender wage gap is greater

for the period of the 2010s than for the period of the 2000s and earlier, which is in line with hypothesis H₄. Accordingly, we can say that the meta-analysis in this paper provides results consistent with all of the hypotheses regarding the gender wage gap in China.

7. Conclusions

In China, income inequality is becoming a severe economic and social problem, and the gender wage gap is an important factor in this respect. Hence, over the last decades, numerous researchers have attempted econometric analyses concerning the wage effect of gender; as a result, we now have a large mass of empirical evidence on this issue. However, the real scale of the gender wage gap is unclear, as are disparities among regions, corporate sectors, and periods. To approach these unresolved issues, we conducted a meta-analysis that utilized 1472 estimates extracted from 199 previous studies. The notable findings obtained from the meta-analysis in this paper can be summarized in the following three points:

First, the empirical results in the extant literature, which covers a period from 1978 to 2018, show that, although the gender wage gap in China is statistically significant and economically meaningful, it remains at a low level, according to the Doucouliagos standard. In this sense, the effect size of gender on wage levels in China through the transition period has been relatively low compared to that in developed countries where the gender wage gap has medium or even higher scales (Weichselbaumer and Winter-Ebmer, 2005). We interpret this result to mean that, unlike in transition economies in Eastern Europe and the former Soviet Union, the socialist philosophy and institutions that treat male and female workers equally continue to be maintained in Chinese society even under systemic transformation to a market economy.

Second, the wage effect of gender differs greatly between regions and corporate sectors in the sense that wage discrimination against women is greater in rural regions and POEs than in urban regions and SOEs. In fact, while the gender wage gap in urban regions and SOEs is evaluated to be small, it is highly likely to be at a medium level in rural regions and POEs. These findings are noteworthy if we are to grasp a real picture of the Chinese wage system.

Third, our results strongly suggest the possibility that the gender wage gap in China has increased dramatically in the last two decades. In fact, according to the publication-selection-bias-adjusted effect size generated by the PEESE method, there is a difference of approximately 1.5 times or more in the gender wage gap from the 2000s to the 2010s.

This means that the gender wage gap in China already has increased to levels similar to those in developed countries in recent years. In light of the test results of hypothesis H₃, we conjecture that the late expansion of the gender wage gap is closely related to the rapid development of the private sector under the background of high economic growth in China. As mentioned in Section 2, it is also probable that the policies for promoting the management autonomy of SOEs spurred this trend as well.

The reasons for the above findings obtained from meta-analysis in this paper can be considered to be as follows: The Chinese government promoted the economic transition from a planned system to a market-oriented economy, which caused great changes in the employment situation of many females (Meng, 2000; Gustafsson and Li, 2001; Maurer-Fazio et al., 2002; Meng, 2000; Démurger et al., 2012; Li and Song, 2013; Ma, 2018a,c). In addition, in China, due to insufficient separation between the political and economic systems, the labor market is segmented into public and private sectors with the progress of market-oriented reforms (Liu et al., 2000; Ma, 2018a,c). Moreover, remarkable imbalances remain between coastal and inland regions and between urban and rural areas (Meng, 2000; Ma, 2018b). As a result, the gender wage gap increased significantly during the transition period; from this viewpoint, notable disparities exist among regions and corporate sectors, which could shake the socialist system to its core. Furthermore, since China faces rapid population aging comparable to that in developed countries, promoting female labor participation is an important issue for maintaining the work force in the future. The increasing gender wage gap could be a major impediment to achieving this goal. In order to maintain sustainable growth and the development of the Chinese economy from a long-term perspective, the Chinese government should implement appropriate policies to reduce discrimination against women in the workplace.

References

- Ahmed, Salma and Mark McGillivray (2015) Human capital, discrimination, and the gender wage gap in Bangladesh. *World Development* 27, pp. 506-524.
- Becker, Gary. S. (1957) The Economics of Discrimination. University of Chicago Press: Chicago.
- Becker, Gary. S. (1964) Human Capital: A Theoretical and Empirical Analysis, With Special Reference to Education 1st Edition. New York: Columbia University Press.
- Blau, Francine D. and Lawrence M. Kahn (2017) The gender wage gap: Extent, trends, and explanations. *Journal of Economic Literature* 55(3), pp. 789-865.
- Brainerd, Elizabeth (2000) Women in transition: Changes in gender wage differentials in Eastern Europe and the Former Soviet Union. *Industrial and Labor Relations Review* 54(19), pp. 138-162.
- Chen, Yi, Sylvie Démurger and Martin Fournier (2005) Wage differentials and ownership structure of China's enterprise. *Economic Development and Cultural Change* 53(4), pp. 933-958.
- Cheng, Tingting (2011) The determinants of gender role consciousness of Chinese women in rural regions: An empirical study based on Chinese General Survey. *Journal of Chinese Women's Studies* 2011(1). (In Chinese)
- Churchill, Sefa Awaworyi and Vinod Mishra (2018) Returns to education in China: A metaanalysis. *Applied Economics* 50(54), pp. 5903-5919.
- Cohen, Jacob (1988) *Statistical Power Analysis for the Behavioral Sciences*. 2nd edition, Lawrence Erlbaum Associates: Hillsdale.
- de la Sara, Rica, Juan J. Dolado and Vanesa Llorens (2008) Ceilings or floors? Gender wage gaps by education in Spain. *Journal of Population Economics* 21(3), pp. 751-776.
- Démurger, Sylvie, Shi Li and Juan Yang (2012) Earning differentials between the public and private sectors in China: Exploring changes for urban local residents in the 2002s. *China Economic Review* 23(1), pp. 138-153.
- Deshpande, Ashwini, Deepti Goel and Shantanu Khanna (2018) Bad Karma or discrimination? Male-female wage gaps among workers in India. *World Development* 102, pp. 331-344.
- Dong Xiaoyuan and Paul Bowles (2002) Segmentation and discrimination in China's emerging industrial labor market. *China Economic Review* 13(2-3), pp. 170-196.
- Doucouliagos, Hristos (2011) How large is large? Preliminary and relative guidelines for interpreting partial correlations in economics. School Working Paper No. SWP 2011/5, School of Accounting, Economics and Finance, Faculty of Business and Law, Deakin University: Melbourne.
- Fan Hongzhong, Shi He and Yum K. Kwan (2020) FDI backward spillovers in China: What a meta-analysis tells us? *Emerging Markets Finance and Trade* 56(1), pp. 86-105.
- Fen Xiaotian and Jie Xiao (2014) The differences of gender role consciousness of Chinese women between the rural regions and urban regions. *Journal of Humanities* 2014(11). (In Chinese)
- Gustafsson, Björn and Shi Li (2000) Economic transformation and the gender earnings gap in urban China. *Journal of Population Economics* 13(2), pp. 305-329.

- Gu Jieshan, Jixing Liu, Shikui Liu and Deqi Xu (1995) Analysis of Contemporary Chinese Interest Group. Beijing: Heilongjiang Education Press. (In Chinese)
- Hallward-Driemeier, Mary, Bob Rijkers and Andrew Waxman (2017) Can minimum wages close the gender wage gap? Evidence from Indonesia. *Review of Income and Wealth* 63(2), pp. 310-334.
- Hara, Hiromi (2018) The gender wage gap across the wage distribution in Japan: Within- and between-establishment effects. *Labor Economics* 53, pp. 213-229.
- Hare, Denise (2019) Decomposing growth in the gender wage gap in urban China: 1989-2011. *Economics of Transition and Institutional Change* 27(4), pp. 915-941.
- Iwasaki, Ichiro (2020a) Meta-analysis of emerging markets and economies: An introductory note for the special issue. *Emerging Markets Finance & Trade* 56(1), pp. 1-9.
- Iwasaki, Ichiro (2020b) *The Economics of Transition: Developing and Reforming Emerging Economies.* Routledge: Abingdon and New York.
- Iwasaki, Ichiro, Xinxin Ma and Satoshi Mizobata (2020) Corporate ownership and managerial turnover in China and Eastern Europe: A comparative meta-analysis. *Journal of Economics and Business*. (Forthcoming)
- Japanese Institute of Labor Policy and Training (JILPT) (2017) Data Book International Comparison of Labor 2017. JILPT press. (In Japanese)
- Jarrell, Stephen B. and T. D. Stanley (2004) Declining bias and gender wage discrimination? A Meta-regression analysis. *Journal of Human Resources* 39(3), pp. 828-838.
- Kettle, Donald F (2018) Earning trust in government. *Journal of Public Affairs Education* 24(3), pp. 295-299.
- Knight, John and Lina Song (1991) The determinants of urban income inequity in China. Oxford Bulletin of Economics and Statistics 53(2), pp. 123-154.
- Li, Shi and Jin Song (2013) The change of gender wage gap in of local urban workers, in change of income inequality in China. In: Li, Shi, Hiroshi Sato and Terry Sicular (eds.), *Studies of Chinese Household Income IV*. Chinese People's Publishing House. (In Chinese)
- Li, Shi, Ximing Yue, Terry Sicular and Hitoshi Sato (2017) *The New Change of Income Distribution in China: Studies of Chinese Household Income V.* China Financial and Economic Publishing House. (In Chinese)
- Liu, Deqiang (1999) Income disparity and social instability in China. In: Falkus, Malcolm, KwanS. Kim, and Royshin Mimani (Eds.), *Growth, Distribution and Political Change: Asia and the Wider World*. Basingstoke: Palgrave Macmillan.
- Liu, Pak-Wai, Xin Meng and Junsen Zhang (2000) Sectoral gender wage differentials and discrimination in the transitional Chinese economy. *Journal of Population Economics* 13(2), pp. 331-352.
- Liu, Yun (2015) Sociological thinking on the current prominent phenomenon of positively participation to the examination of civil servants. *Reading and Writing* 2015(7). (In Chinese)
- Ljungwall, Christer and Patrik Gustavsson Tingvall (2015) Is China different? A meta-analysis of the growth-enhancing effect from R&D spending in China. *China Economic Review* 36, pp. 272-278.
- Ma, Xinxin (2018a) Ownership sector segmentation and the gender wage gap in urban China

during the 2000s. Post-Communist Economies 30(6), pp. 775-804.

- Ma, Xinxin (2018b) Labor market segmentation by industry sectors and wage gaps between migrants and local urban residents in urban China. *China Economic Review* 47, pp. 96-115.
- Ma, Xinxin (2018c) *Economic Transition and Labor Market Reform in China*. Singapore: Palgrave Macmillan.
- Ma, Xinxin and Ichiro Iwasaki (2020) Does party membership bring a wage premium in China? A meta-analysis. *Journal of Chinese Economic and Business Studies*. (Revised and resubmitted)
- Majchrowska, Aleksandra and Paweł Strawiński (2018) Impact of minimum wage increase on gender wage gap: Case of Poland. *Economic Modelling* 70, pp. 174-185.
- Maurer-Fazio, Margaret and James Hughes (2002) The effects of market liberalization on the relative earnings of Chinese women. *Journal of Comparative Economics* 30(4), pp. 709-731.
- Meng, Xin (1998a) Male-female wage determination and gender wage discrimination in China' rural industrial sector. *Labor Economics* 5(1), pp. 67-89.
- Meng, Xin (1998b) Gender occupational segregation and its impact on the gender wage differential among rural-urban migrants: A Chinese case study. *Applied Economics* 30(6), pp. 741-752.
- Meng, Xin (2000) Labor Market Reform in China. Cambridge University Press: Cambridge.
- Meng, Xin and Paul Miller (1995) Occupational segregation and its impact on gender wage discrimination in China' rural industrial sector. *Oxford Economic Paper* 47(1), pp. 136-155.
- Minami, Ryoshin and Xinxin Ma (2010) The Lewisian turning point of Chinese economy: Comparison with Japanese experience. *Chinese Economic Journal* 3(2), pp. 165-181.
- Mincer, Jacob (1974) *Schooling, Experience and Earning*. New York: Columbia University Press
- Nakagawa, Shinichi, Daniel W. A. Noble, Alistair M. Senior and Malgorzata Lagisz (2017) Meta-evaluation of meta-analysis: Ten appraisal questions for biologists, *BMC Biology* 15(18).
- National Bureau of Statistics of China (2018) *China Statistical Yearbook 2018*. China Statistics Press. (In Chinese)
- Ren, Weiwei and Paul W. Miller (2012) Gender differentials in the payoff to schooling in rural China. *Journal of Development Studies* 48(1), pp. 133–150.
- Rozelle, Scott, Xiaoyuan Dong, Linxiu Zhang and Andrew Mason (2002) Gender wage gaps in post-reform rural China. *Pacific Economic Review* 7(1), pp. 157-179.
- Shu, Xiaoling, Yifei Zhu and Zhanxin Zhang (2007) Global economy and gender inequalities: The case of the urban Chinese labor market. *Social Science Quarterly* 88(5), pp. 1307-1332.
- Song, Jin, Terry Sicular, Basso Gustafson (2017) The gender wage gap of urban workers: A new trend. In: Li, Shi, Ximing Yue, Terry Sicular and Hiroshi Sato (eds.), *The New Change of Income Distribution in China-Studies of Chinese Household Income V.* China Financial and Economic Publishing House. (In Chinese)
- Song, Shunfeng, Erqian Zhu and Zhuo Chen (2011) Equal work opportunity but unequal income: Gender disparities among low-income households in urban China. *The Chinese Economy* 44(1), pp. 39–45.

- Stanley, T. D. and Hristos Doucouliagos (2012) *Meta-Regression Analysis in Economics and Business*. Routledge: London and New York.
- Stanley, T. D. and Hristos Doucouliagos (2017) Neither fixed nor random: Weighted least squares meta-regression. *Research Synthesis Method* 8(1), pp. 19-42.
- Stanley, T. D. and Stephen B. Jarrell (1998) Gender wage discrimination bias? A meta-regression analysis. *Journal of Human Resources* 33(4), pp. 947-973.
- Stanley, T. D., Hristos Doucouliagos and John P. A. Ioannidis (2017) Finding the power to reduce publication bias. *Statistics in Medicine* 36(10), pp.1580-1598.
- Sun, Qi and Juann H. Hung (2018) The rise in China's gender income inequality. In: Hung, J. H. and Y. Chen (eds.), *The State of China's State Capitalism*. Springer: Singapore, pp. 219-236.
- Weichselbaumer, Doris and Rudolf Winter-Ebmer (2005) A meta-analysis of the international gender wage gap. *Journal of Economic Surveys* 19(3), pp. 479-511.
- Zhang, Juwei and Wen Zhao (2018) Current situation of income distribution in China and thoughts of reduction of gap: Measures to be taken by the government to maintain the social stability. *Nikkei Business*, July 20 2018 (https://business.nikkei.com). (In Japanese)
- Zhao, Xian-Zhou, Yu-Bing Zhao, Li-Chen Chou and Barbara Hoinunnem Leivang (2019) Changes in gender wage differentials in China: A regression and decomposition based on the data of CHIPS1995–2013. *Economic Research-Ekonomska Istraživanja* 32(1), pp. 3162-3182.

Appendix A.

This appendix describes the methodology of the testing for publication selection bias that we employed in Section 6 of this paper.

A funnel plot is a scatter plot with the effect size (in the case of this paper, the PCC) on the horizontal axis and the precision of the estimate (in this case, inverse of the standard error 1/SE) on the vertical axis. In the absence of publication selection bias, effect sizes reported by independent studies vary randomly and symmetrically around the true effect. Moreover, according to the statistical theory, the dispersion of effect sizes is negatively correlated with the precision of the estimate. Therefore, the shape of the plot must look like an inverted funnel. In other words, if the funnel plot is not bilaterally symmetrical but is deflected to one side, then an arbitrary manipulation of the study area in question is suspected, in the sense that estimates in favor of a specific conclusion (i.e., estimates with an expected sign) are more frequently published.

The FAT-PET-PEESE procedure has been developed to test publication selection bias and presence of genuine evidence in a more rigid manner: FAT can be performed by regressing the *t* value of the *k*-th estimate on the inverse of the standard error (1/SE) using the next equation (1a), thereby testing the null hypothesis that the intercept term γ_0 is equal to zero:

$$t_k = \gamma_0 + \gamma_1 (1/SE_k) + v_k, \qquad (1a)$$

where v_k is the error term. When the intercept term γ_0 is statistically significantly different from zero, we can interpret that the distribution of the effect sizes is asymmetric.

Even if there is publication selection bias, a genuine effect may exist in the available empirical evidence. Stanley and Doucouliagos (2012) proposed examining this possibility by testing the null hypothesis that the coefficient γ_1 is equal to zero in Eq. (1a). The rejection of the null hypothesis implies the presence of genuine empirical evidence. γ_1 is the coefficient of precision; therefore it is called a PET.

Moreover, Stanley and Doucouliagos (2012) also stated that an estimate of the publication-selection-adjusted effect size can be obtained by estimating the following equation (2a), which has no intercept. If the null hypothesis of $\gamma_1 = 0$ is rejected, then the non-zero true effect does actually exist in the literature, and the coefficient γ_1 can be regarded as its estimate.

$$t_k = \gamma_0 S E_k + \gamma_1 (1/S E_k) + v_k.$$
 (2a)

This is the PEESE approach. We can see that the coefficient γ_1 in Eq. (2a) may

become the estimate of the publication-bias-adjusted effect size in light of the fact that the following equation is obtained when both sides of Eq. (2a) are multiplied by the standard error:

Effect size_k =
$$\gamma_0 SE_k^2 + \gamma_1 + w_k$$
. (2b)

When directly estimating Eq. (2b), the WLS method, with $1/SE_k^2$ as the analytical weight, is used.

To test the robustness of the regression coefficients obtained from the above FAT-PET-PEESE procedure, we estimate Eqs. (1a) and (2a) using not only the OLS estimator, but also the cluster-robust OLS estimator, the multi-level mixed-effects RML estimator, and the unbalanced panel estimator for a robustness check.

Appendix B.

List of literature subject to meta-analysis

(a) English studies

- Appleton, Simon, John Knight, Lina Song and Qingjie Xia (2009) The economics of communist party membership: The curious case of rising numbers and wage premium during China's transition. Journal of Development Studies 45(2), pp. 256–275.
- Appleton, Simon, Lina Song and Qingjie Xia (2005) Has China crossed the river? The evolution of wage structure in urban China during reform and retrenchment. Journal of Comparative Economics 33(5), pp. 644–663.
- Asadullah, M. Niaz and Saizi Xiao (2020) The changing pattern of wage returns to education in post-reform China, Structural Change and Economic Dynamics, 53, pp. 137-148.
- Bian, Yanjie, Xianbi Huang and Lei Zhang (2015) Information and favoritism: The network effect on wage income in China. Social Networks 40, pp. 129-138.
- Cai, Fang and Yang Du (2011) Wage increases, wage convergence, and the Lewis turning point in China. China Economic Review 22(4), pp. 601-610.
- Cheng, Hong, Dezhuang Hu and Hongbin Li (2020) Wage differential between rural migrant and urban workers in the People's Republic of China, Asian Development Review, 37(1), pp. 43–60.
- Cheng, Zhiming, Fei Guo, Graeme Hugo and Xin Yuan (2013) Employment and wage discrimination in the Chinese cities: A comparative study of migrants and locals. Habitat International 39, pp. 246-255.
- Chi, Wei, Bo Li and Qiumei Yu (2010) Decomposition of the increase in earnings inequality in urban China: A distributional approach. China Economic Review 22(2), pp. 299-312.
- Chou, Li-Chen, Wan-Hao Zhang and Zixuan Hu (2002) Influences of the Cultural Revolution on the education and wages of today's Chinese laborers, Economic Research-Ekonomska Istraživanja, 33(1), pp. 456-476.
- de Brauw, Alan and Scott Rozelle (2008) Reconciling the returns to education in off-farm wage employment in rural China. Review of Development Economics 12(1), pp. 57–71.
- Deng, Quheng and Shi Li (2009) What lies behind rising earnings inequality in urban China? Regression-based decompositions. CESifo Economic Studies 55(3/4), pp. 598–623.
- Dong, Xiao-Yuan (2005) Wage inequality and between-firm wage dispersion in the 1990s: A comparison of rural and urban enterprises in China. Journal of Comparative Economics 33(4), pp. 664–687.
- Dong, Xiao-Yuan and Paul Bowles (2002) Segmentation and discrimination in China's emerging industrial labor market. China Economic Review 13(2/3), pp. 170-196.
- Démurger, Sylvie, Shi Li and Juan Yang (2012) Earnings differentials between the public and private sectors in China: Exploring changes for urban local residents in the 2000s. China Economic Review 23(1), pp. 138-153.
- Gao, Wenshu and Russell Smyth (2011) Firm size and wages in China. Applied Economics Letters 18(4), pp. 353–357.
- Gao, Wenshu and Russell Smyth (2015) Education expansion and returns to schooling in urban

China, 2001-2010: Evidence from three waves of the China urban labor survey. Journal of the Asia Pacific Economy 20(2), pp. 178-201.

- Guo, Xiaoqi and James K. Hammitt (2009) Compensating wage differentials with unemployment: Evidence from China. Environmental and Resource Economics 42(2), pp. 187-209.
- Gustafsson, Björn and Haiyuan Wan (2020) Wage growth and inequality in urban China: 1988–2013, China Economic Review, 62 (In press).
- Gustafsson, Björn, Li Shi, Ludmila Nivorozhkina and Katarina Katz (2001) Rubles and Yuan: Wage functions for urban Russia and China at the end of the 1980s. Economic Development and Cultural Change 50(1), pp. 1-17.
- Gustafsson, Björn, Li Shi, Ludmila Nivorozhkina and Haiyuan Wan (2015) Yuan and Roubles: Comparing wage determination in urban China and Russia at the beginning of the new millennium. China Economic Review 35, pp. 248-265.
- Han, Jun, Runjuan Liu and Junsen Zhang (2012) Globalization and wage inequality: Evidence from urban China, Journal of International Economics 87(2), pp. 288-297.
- Heckman, James and Xuesong Li (2004) Selection bias, comparative advantage and heterogeneous returns to education: Evidence from China in 2000. Pacific Economic Review 9(3), pp. 155–171.
- Hering, Laura and Sandra Poncet (2009) The impact of economic geography on wages: Disentangling the channels of influence. China Economic Review 20(1) pp. 1–14.
- Ho, Samuel P. S., Xiao-Yuan Dong, Paul Bowles and Fiona MacPhail (2002) Privatization and enterprise wage structures during transition: Evidence from rural industry in China. Economics of Transition 10(3), pp. 659-688.
- Howell, Anthony (2020) Minimum wage impacts on Han-minority workers' wage distribution and inequality in urban China, Journal of Urban Economics, 115, Article 103184.
- Hu, Fox Z. Y. (2020) Global city development and urban wage inequality in China, Asian Geographer (In press).
- Huang, Xiaoyu, José Vaz Caldas and João Rebelo (2002) Returns to education during the reform of state-owned enterprises in Hunan, People's Republic of China. Labour 16(3), pp. 513-535.
- Hughes, James and Margaret Maurer-Fazio (2002) Effects of marriage, education, and occupation on the female/male wage gap in China. Pacific Economic Review 7(1), pp. 137-156.
- Knight, John and Lina Song (2003) Increasing urban wage inequality in China: Extent, elements and evaluation. Economics of Transition 11(4), pp. 597–619.
- Knight, John and Shi Li (2006) Unemployment duration and earnings of re-employed workers in urban China. China Economic Review 17(2), pp. 103–119.
- Knight, John and Song Lina (1991) The determinants of urban income inequity in China. Oxford Bulletin of Economics and Statistics 53(2), pp. 123-154.
- Kong, Jun (2017) Determinants of graduates' job opportunities and initial wages in China. International Labour Review 156 (1), pp. 99-112.
- Kwon, Ohyun, Simon Chang and Belton M. Fleisher (2015) Evolution of the interindustry wage structure in China since the 1980s. Pacific Economic Review 20(1), pp. 17–44.
- Lee, Leng (2012) Decomposing wage differentials between migrant workers and urban workers in urban China's labor markets. China Economic Review 23(2), pp. 461-470.
- Li, Haizheng (2003) Economic transition and returns to education in China. Economics of Education Review 22(3), pp. 317–328

- Li, Haizheng and Yi Luo (2004) Reporting errors, ability heterogeneity, and returns to schooling in China. Pacific Economic Review 9(3), pp. 191-207.
- Li, Hongbin, Yueyuan Ma, Lingsheng Meng, Xue Qiao and Xinzheng Shi (2017) Skill complementarities and returns to higher education: Evidence from college enrollment expansion in China. China Economic Review 46, pp. 10-26.
- Li, Shi, Shanshan Wu and Chunbing Xing (2018) Education development and wage inequality in urban China. Asian Economic Papers 17(2), pp. 140-151.
- Liu, Yang (2017) Role of individual social capital in wage determination: Evidence from China. Asian Economic Journal 31(3), pp. 239–252.
- Liu, Zeyun and Jin Xiao (2006) The accumulation of human capital over time and its impact on salary growth in China. Education Economics 14(2), pp. 155–180.
- Liu, Zhiqiang (2001) The effects of economic reforms on wage inequality: Some evidence from China. Applied Economics Letters 8(4), pp. 285-288.
- Long, Wenjin, Simon Appleton and Lina Song (2017) The impact of job contact networks on wages of rural–urban migrants in China: A switching regression approach, Journal of Chinese Economic and Business Studies 15(1), pp. 81-101.
- Lovely, Mary E., Yang Liang and Hongsheng Zhang (2019) Economic geography and inequality in China: Did improved market access widen spatial wage differences? China Economic Review, 54, pp. 306-323.
- Lu, Yao and Feng Wang (2013) From general discrimination to segmented inequality: Migration and inequality in urban China. Social Science Research 42(6), pp. 1443-1456.
- Lui, Hon-Kwong and Yui-Tim Wong (2005) Do loyal subordinates get higher wages? Experience from China. Applied Economics Letters 12(10), pp. 649–652.
- Lyu, Lidan and Yu Chen (2019) Parental migration and young migrants' wages in urban China: An exploratory analysis, Urban Studies, 56(10), pp. 1968-1987.
- Ma, Xinxin (2018a) Labor market segmentation by industry sectors and wage gaps between migrants and local urban residents in urban China. China Economic Review 47, pp. 96-115.
- Ma, Xinxin (2018b) Ownership sector segmentation and the gender wage gap in urban China during the 2000s. Post-Communist Economies 30(6), pp. 775-804.
- Ma, Xinxin and Jie Cheng (2020) The influence of social insurance on wages in China: An empirical study based on Chinese employee-employer matching data, Emerging Markets Finance and Trade (In press).
- MacDonald, Andrew W. and Reza Hasmath (2019) Outsider ethnic minorities and wage determination in China, International Labour Review, 158(3), pp. 489-508.
- McLaughlin, Joanne Song (2017) Does Communist party membership pay? Estimating the economic returns to party membership in the labor market in China. Journal of Comparative Economics 45(4), pp. 963-983.
- Meng, Xin (1998) Gender occupational segregation and its impact on the gender wage differential among rural-urban migrants: A Chinese case study. Applied Economics 30(6), pp. 741-752.
- Meng, Xin and Junsen Zhang (2001) The two-tier labor market in urban China: Occupational segregation and wage differentials between urban residents and rural migrants in Shanghai. Journal of Comparative Economics 29(3), pp. 485–504.
- Messinis, George (2013) Returns to education and urban-migrant wage differentials in China: IV quantile treatment effects. China Economic Review 26, pp. 39-55.

- Mishra, Vinod and Russell Smyth (2012) Environmental regulation and wages in China. Journal of Environmental Planning and Management 55(8), pp. 1075-1093.
- Mishra, Vinod and Russell Smyth (2014) Technological change and wages in China: Evidence from matched employer–employee data. Review of Development Economics 18(1), pp. 123–138.
- Mishra, Vinod and Russell Smyth (2015) Estimating returns to schooling in urban China using conventional and heteroskedasticity-based instruments. Economic Modelling 47, pp. 166-173.
- Nikolev, Plamen, Hongjian Wang and Kevin Acker (2020) Wage premium of Communist Party membership: Evidence from China, Pacific Economic Review (In press).
- Pan, Liqun, Pundarik Mukhopadhaya, and Jing Li (2019) The changing texture of the city-size wage differential in Chinese cities: Effects of skill and identity, China Economic Review, 53, pp. 191-210.
- Peng, Shuhong (2019) Urban scale and wage premium: Evidence from China, Journal of the Asia Pacific Economy, 24(3), pp. 468-480.
- Qian, Xiaolei and Russell Smyth (2008) Private returns to investment in education: An empirical study of urban China. Post-Communist Economies 20(4), pp. 483–501.
- Qu, Zhaopeng and Zhong Zhao (2017) Glass ceiling effect in urban China: Wage inequality of rural-urban migrants during 2002–2007. China Economic Review 42, pp. 118-144.
- Qui, Tian and John Hudson (2010) Private returns to education in urban China. Economic Change and Restructuring 43(2), pp. 131-150.
- Ren, Weiwei and Paul W. Miller (2012) Gender differentials in the payoff to schooling in rural China. Journal of Development Studies 48(1), pp. 133–150.
- Rickne, Johanna (2012) Firm size and work compensation in China. China & World Economy 22(1), pp. 67–82.
- Shu, Xiaoling, Yifei Zhu and Zhanxin Zhang (2007) Global economy and gender inequalities: The case of the urban Chinese labor market. Social Science Quarterly 88(5), pp. 1307-1332.
- Song, Shunfeng, Erqian Zhu and Zhuo Chen (2011) Equal work opportunity but unequal income: Gender disparities among low-income households in urban China. The Chinese Economy 44(1), pp. 39–45.
- Su, Zhi-Fang, Xiao-Xiang Ma, Wei Xiao, Mei-Yuan Chen (2020) Marginal effects of public employment on unconditional distribution of wage income in China, North American Journal of Economics and Finance (In press).
- Wang, Chunchao, Chenglei Zhang and Jinlan Ni (2015) Social network, intra-network education spillover effect and rural–urban migrants' wages: Evidence from China. China Economic Review 35, pp. 156-168.
- Wang, Feicheng, Chris Milner and Juliane Scheffel (2018) Globalization and inter-industry wage differentials in China. Review of International Economics 26(2), pp. 404-437.
- Wang, Weigong, Yongqing Dong, Renfu Luo, Yunli Bai and Yunli Bai (2019) Changes in returns to education for off-farm wage employment: Evidence from rural China, China Agricultural Economic Review, 11(1), pp. 2-19.
- Wang, Wen and Donald Lien (2018) Union membership, union coverage and wage dispersion of rural migrants: Evidence from Suzhou industrial sector. China Economic Review 49, pp. 96-113.
- Wang, Wenxin and Suminori Tokunaga (2007) The determinants of employment mode in Chinese

rural labor: Empirical evidence from the survey data of Fuyang county in Anhui province. Studies in Regional Science 37(3), pp. 817-827.

- Wu, Na and Qunyong Wang (2018) Wage penalty of overeducation: New micro-evidence from China. China Economic Review 50, pp. 206-217.
- Wu, Zheren (2010) Self-selection and earnings of migrants: Evidence from rural China. Asian Economic Journal 24(1), pp. 23–44.
- Xiao, Jin (2001) Determinants of employee salary growth in Shanghai: An analysis of formal education, on-the-job training, and adult education with a three-level model. China Review 1(1), pp. 73-110.
- Xiu, Lin and Morley Gunderson (2013) Credential effects and the returns to education in China. Labour 27(2), pp. 225–248.
- Xue, Jinjun, Wenshu Gao and Lin Guo (2014) Informal employment and its effect on the income distribution in urban China. China Economic Review 31, pp. 84-93.
- Yang, Juan and David Mayston (2012) Impact of overeducation on wages in China. The Chinese Economy 45(2), pp. 65–89.
- Yao, Yao, George S. Chen, Ruhul Salim and Xiaojun Yu (2018) Schooling returns for migrant workers in China: Estimations from the perspective of the institutional environment in a rural setting. China Economic Review 51, pp. 240-256.
- Yueh, Linda Y. (2004) Wage reforms in China during the 1990s. Asian Economic Journal 18(2), pp. 149-164.
- Zhang, Haiqing, Linxiu Zhang, Renfu Luo and Qiang Li (2008) Does education still pay off in rural China: Revisit the impact of education on off-farm employment and wages. China & World Economy 16(2), pp. 50–65.
- Zhang, Junsen, Yaohui Zhao, Albert Park and Xiaoqing Song (2005) Economic returns to schooling in urban China, 1988 to 2001. Journal of Comparative Economics 33(4), pp. 730– 752.
- Zhang, Linxiu, Jikun Huang and Scott Rozelle (2002) Employment, emerging labor markets, and the role of education in rural China. China Economic Review 13(2/3), pp. 313–328.
- Zhao, Xian-Zhou, Yu-Bing Zhao, Li-Chen Chou and Barbara Hoinunnem Leivang (2019) Changes in gender wage differentials in China: A regression and decomposition based on the data of CHIPS1995–2013, Economic Research-Ekonomska Istraživanja, 32(1), pp. 3162-3182.
- Zhao, Xiliang (2020) Migrants and urban wage: Evidence from China's internal migration, China Economic Review, 61, Article 101287.
- Zhao, Yao (2001) Foreign direct investment and relative wages: The case of China. China Economic Review 12(1), pp. 40-57.
- Zhong, Hai (2011) Returns to higher education in China: What is the role of college quality? China Economic Review 22(2), pp. 260-275.
- Zhu, Rong (2016) Wage differentials between urban residents and rural migrants in urban China during 2002–2007: A distributional analysis. China Economic Review 37, pp. 2-14.
- Zuo, Hong (2013) Formal and informal employment in China: Probability of employment and determinants of monthly wages. Australian Economic Review 46(4), pp. 405–423.

(b) Chinese studies

- Bi, Xianjin (2010) The determinants for income of Chinese rural people: Benefits from education, political capital and regional variation. Journal of Shandong Agricultural Administrators' College 27(4), pp. 1-14.
- Chang, Junxiong and Junfu Xiang (2013) Higher education expansion and returns to college education. Chinese Journal of Population Science 3, pp. 104-111.
- Chen, Chunjin and Rongmei Hu (2013) Changes in economic return to education in urban China. Journal of Beijing Normal University (Social Science) 5(239), pp.54-68.
- Chen, Hao and Chunming Zhao (2018) The impact of Chinese high-tech industry openness on female wage growth. Economic Survey 35(1), pp. 78-85.
- Chen, Peng, Xu Tian and Jun He (2019) Market development, labor contract heterogeneity and the premium effect of migrant workers' salary: An empirical study based on CHIP data. Journal of Agrotechnical Economics 6, pp. 107-119.
- Chen, Ruixiang (2010) Where does the huge thirsty in civil service exam come from? A study on human capital pricing among different sector. Youth Research 3, pp.88-93.
- Chen, Xiaofei, Yang Li and Weiguo Yang (2018) A study into the wage effect and non-wage effect of collective negotiations: A case study into China's employer-employee matching Data. Journal of China University of labor Relations 32(3), pp. 35-43.
- Cheng, Cheng Yixuan Wang and Yanjie Bian (2014) Gender-earning differentials om Chinese urban labour market: A social capital perspective. Population Research 29(2), pp. 3-16.
- Cheng, Hong and Tang Li (2017) The effects of personality traits on wages: Empirical analyses based on the China Employer-Employee Survey (CEES). Economic Research Journal 2, pp. 171-186.
- Cheng, Jiwei, Guangsheng Zhang and Jiangying Guo (2017) The rural migrant workers' employment stability and their wage gap: An analysis of unconditional quantile decomposition. South China Population 3, pp. 69-80.
- Di, Yuna (2014) Intergeneration mobility, return to education and opportunity equality. Economic Science 1, pp. 65-74.
- Ding, Xiaohao, Qiumei Yu and Hongxia Yu (2012) Research on rates of return to education of Chinese urban residents and its changes in this century. Research in Educational Development 11, pp. 1-6.
- Fang, Chao and Bin Huang (2019) The decomposition of educational return and income gap of China' rural residents: Causal inference based on microeconometrics. Economic Survey 36(1), pp. 49-55.
- Feng, Lu, Renkun Yang and Ruimin Wang (2019) The size of social network and rural-urban migrants' wages: Findings from a survey of migrants in China's 6 provinces and 12 cities. Population & Development 25(6), pp. 2-15.
- Guan, Enhui and Baihui Liu (2011) Wage differentials between public and private sectors. Quantitative & Technica Economics 3, pp. 66-78.
- Guo, Xiaoxuan and Shun Zhang (2014) Change trends of rates of return to education of Chinese residents and its effects on income distribution: Analysis based on quantile regress model. Fudan Education Forum 12(3), pp. 51-56.
- Guo, Xibao and Lan Zhu (2018) How urbanization influences urban wage inequality: Based on

CGSS (2016) data. Economic Theory and Business Management 7, pp. 5-15.

- He, Yiming (2009) The Changes of the Rate of Return to Education: An Empirical Study Based on the Data of CHNS. Chinese Journal of Population Science 2, pp. 44-54.
- Huang, Bin and Xiaolin Zhong (2012) Education and individual income in the rural areas in China. Education Research 3(386), pp. 18-26.
- Huang, Qian (2009) Comparison study on two types of wage differential of migrants. Research on Financial and Economic Issue 6(307), pp. 118-124.
- Huang, Xing and Xiaofeng Li (2019) The differences of agricultural transfer labors' waged and change in Beijing: From working experience to post. Chinese Journal of Agricultural Resources and Regional Planning.
- Huang, Zhiling (2010) The study on the gender wage differential among rural urban migrant. Issues on Agricultural Economy 8, pp. 44-51.
- Jiang, Kezhong, Yu Pei and Cermin Xia (2012) The dynamic evolution of the public and nonpublic sector wage differences: Empirical research based on CHNS data. Journal of Shanxi Finance and Economics University 34(11), pp. 63-74.
- Jin, Shenfan, Yongtao Wu and Mingda Cheng (2018) Empirical analyses on wage differentials of new generation migrants: Based on Chengdu city research data. Rural Economics and Technology 1(429), pp. 126-129.
- Li, Hongbin and Hongbo Cai (2013) Has the export widened the wage gap between the skilled and the unskilled? Reexamination based on Chinese Household Income Project Survey. Economic management 11(515), pp. 13-22
- Li, Hongyang and Min Shao (2018) The effect of temporary employment on labor wages. Journal of Finance Economics 44(1), pp. 113-127.
- Li, Liying and QianqianTian (2014) A research on the effect of heath on residents' wage: Based on china nutrition and health survey. Journal of Henan University of Technology (Social Science) 10, pp.87-93.
- Li, Mingyan, Yan Wu and Xianlei Ma (2017) Studies on wage determinants of migrants and gender gaps. Zhejiang Academic Journal 3, pp. 41-49.
- Li, Shi, Song Jin and Xiaochuang Liu (2014) The evolution of the gender wage gap of the staff of China's cities and towns. Management World 3, pp. 53-66.
- Li, Xiaofeng and Xing Huang (2019) The impact factors and differences of migrant workers' wages in China' less-developed regions. Journal of Beijing Union University (Humanities and Social Sciences) 17(4), pp.100-108.
- Li, Xiaohua and Yaohui Zhao (2014) Wage differentials and monopoly rents. Labor Economics Study 2(4), pp. 68-84.
- Li, Yongjie, Xiahai Wei and Jiajun Lan (2013) Does "wage premium" of labor union exist? Evidence from China. Journal of China North South Normal University (Social Science) 5, pp. 127-133.
- Li, Yuxing (2019) The impact of heterogeneity of culture on workers' wages. Economic Forum 571(2), pp. 139-146.
- Liang, Run (2011) Differences in returns to education in urban and rural China and increasing income gap. Modern Economic Science 33(6), pp. 64-71.
- Liao, Fei and Min Yan (2018) Higher education expansion and college wage premium. Research on Financial and Economic Issues 6(415), pp. 114-121.

- Liu, Hongyin (2018) Impact of urbanization of new generation migrant workers on wage income: Based on 797 nationwide questionnaires. Jiangsu Agricultural Sciences 7, pp. 33-42.
- Liu, Jiankun (2017) Discrimination related to household registration, human capital and income inequality in urban China: based on the theory of labor market segmentation. Journal of Social development 4, pp. 66-84.
- Liu, Jingjun and Chunbing Xing (2012) Performances pay and wage differentials: Evidence from rural migrant workers in Pearl River Delta. South China Journal of Economics 10, pp. 173-185.
- Liu, Yi and Bo Song (2018) Income effect of vocational skill certificates on migrant workers, Journal of Nanjing Institute of Technology (Social Science Edition) 18(1), pp. 43-49.
- Liu, Zeryun (2008) Analysis on gender gap of rates of return to education. Collection of Women's Studies 2(85), pp. 28-34.
- Liu, Zeryun and Muyuan Qiu (2011) Returns to education in off-farm wage employment in rural China. Journal of Beijing Normal University (Social Sciences) 6, pp. 79-90.
- Lu, Haiyang and Xuyuan Zhen (2019) Difference in endowment, bargaining power and the waged of rural-urban migrants: Evidence from China Labor-force Dynamic Survey. Journal of Agrotechnical Economics 6, pp. 97-106.
- Luo, Ruidong and Yuxin Li (2014) Changes of wage determinants and wage differentials between the state-owned sector and the non state-owned sector. Journal of Shandong University (Philosophy and Social Sciences) 2, pp. 20-32.
- Mao, Yufei, Xiangquan Zeng and Wenxin Hu (2018) Does internet usage reduce the gender wage gap? Empirical analysis based on CFPS Data. Journal of Finance Economics 44(7), pp. 33-45.
- Meng, Dahu, Lifeng Su and Desheng Lai (2012) An empirical study on the returns to education of the ethnic minorities in Chinese cities and towns in the economic transition period. Ethno-National Studies 1, pp. 25-34.
- Meng, Fanqiang (2014) Urban-rural wage gap in the multiple segmented labor market. Population & Economics 2(203), pp.76-85.
- Meng, Fanqiang and Xiaomei Xiang (2019) Occupational segregation, discrimination in wages and segmentation of migrants. Journal of South Normal University (Social Science Edition) 3, pp. 102-111.
- Ning, Guangjie (2009) Does the education expansion improve the wage differentials? Evidence based on 2006 CHNS, World Economic Papers 1, pp. 1-14.
- Ning, Guangjie (2011) Decomposition on wage differentials in China: How much does the discrimination exist? World Economic Papers 2, pp. 19-35.
- Ouyang, Renfei, Dahu Meng and Juan Yang (2017) Higher education expansion and the evolution of gender wage gap among college graduates: An empirical analysis based on CHIPs2002-2013 data. Tsinhua Journal of Education 38(3), pp. 97-107.
- Peng, Shuhong (2017) The inverted U-shaped evolutionary characteristic of Chinese college premium: Evidence from CHIP 1988-2013, South China Journal of Economics 11, pp. 37-56.
- Qian, Zhengming and Yingying Yi (2009) Estimation and analysis of return to education in China. Statistical Research 26(7), pp. 43-50.
- Qu, Xiaobo (2012) Wage gap between formal employment and informal employment in urban China based on income inequality decomposition of informal heterogeneity. South China

Journal of Economics 4, pp. 32-42.

- Qu, Xiaobo (2014) Changes in wage differences between local and migrant workers in urban areas: Glass ceiling or sticky floor? Journal of Finance and Economics 40(6), pp. 109-120.
- Qu, Xiaobo and Jianing Lv (2020) Quality of college education and labor market performance: An analysis based on wage returns. Economic Perspectives 2, pp. 30-44.
- Qu, Zhaopeng (2016) Study on gender wage gap in urban labor market in China: Evidence from job market for college graduates. Journal of Beijing Technology and Business University (Social Sciences) 31(2), pp. 30-40.
- Sun wenkai, JinWang and Hong Li (2016) Trend of wage premium of in-system in China: Evidence from CGSS data. Labour Economics Study 4(4), pp. 73-97.
- Sun, Wenkai and Rong Fan (2017) Reevaluate wage premium within systems: Empirical studies based on CFPS. Economic Perspectives 5, pp. 89-101.
- Sun, Yanan and Zirong Ye (2016) Individual heterogeneity, job characteristics and migrant workers' wage level: Empirical evidence from public service institutions. Reform of Economic System 6, pp. 186-192.
- Sun, Zhaoyang and Yujin Liu (2019) How does trade union influence workers' wage in China: An analysis based on CGSS 2008-2015 mixed cross-sectional data. Studies in Labor Economics 7(4), pp. 121-144.
- Sun, Zhijun (2014) Estimates of the return to schooling from a sample of Chinese twins. China Economic Quarterly 13(3), pp. 1001-1020.
- Tan, Jing, Jingwen Yu and Xiaolong Li (2017) An analysis on Hukou difference in the rate of return to education for migrant workers: A comparison between rural temporary migrants and urban temporary migrants. China Rural Survey 1(33), pp. 82-96.
- Tang, Canqing and Zhiqiang Dong (2020) Can trade union promote the win-win of employees and employers? Theory and empirical evidence based on the Employee-Employer Matching Data. Academic Research Journal 1, pp. 94-102.
- Wang, Guanghui and Yunfei Ji (2018) Analysis on huji wage differentials of migrants based on the perspective of economic development level of inflow areas: A case on higher educational group. Journal of Northeast Normal University (Philosophy and Social Sciences) 4(294), pp. 161-167.
- Wang, Meiyan (2003) Wage differential in the transition period: Econometric analysis on the discrimination. Quantitative & Technica Economics 5, pp. 94-98.
- Wang, Rui, Xinzheng Shi and Hongbin Li (2014) Wage premium in SOEs and explanatory factors. China Journal of Economics 1(3), pp. 41-56.
- Wang, Xuejun (2017) The evolution of the wage differentials between formal and informal employment in China: Based on the method of unconditional quantile regression. The Theory and Practice of Finance and Economics 38(208), pp. 89-96.
- Wang, Yangyang, Xiaohui Zhang and Jinna Cui (2017) Empirical study on wage differentials within groups of migrants: Based on CGSS2013. Statistical Analysis 3, pp. 37-45.
- Wang, Zhaoping and Wenli Wang (2020) Research on the influence of marriage and birth on wages. Population Journal 239(42), pp. 99-112.
- Wei, Huaying and Honghao Sun (2019) Beauty and income: A study on the discrimination of beauty in labor market. Sino Foreign Management 9, pp. 69-72.
- Wei, Xiahai, hui Cao and Chunxiu Wu (2018) Production line upgrading and the convergence of

gender wages. Economic Research Journal 2, pp. 156-169.

- Wei, Zong (2004) The role of health on off-farm employment and wage decision. Economic Research Journal 2, pp. 64-74.
- Wu, Xiaogang and Zhuoni Zhang (2014) Household registration, occupational segregation and income inequality in urban China. Social Sciences in China 6, pp. 118-140.
- Wu, Youhong and Xuhong Li (2019) Cost and benefit in urbanization. Modern Economic Research 12, pp. 126-132.
- Xie, Fusheng and Yuilin Chen (2017) Can minimum wage policy increase the income of laborers at the bottom level? An empirical study based on 2003-2012 CGSS data. Journal of Renmin University of China 3, pp. 54-70.
- Xie, Weiei and Xiaoxi Zeng (2018) Effects of city population size on laborers' wage levels: Analyses based on Chinese Household Income Project Survey data. City Problem 1, pp. 65-73.
- Xu, Tao (2013) Segmentation and marginal utility increase: Feature of individual rates of return to education-multilevel analysis based on CGSS2005. Wuhan University Journal (Philosophy and Social Science) 66(1), pp. 109-114.
- Xu, Yan, Guoping Zeng and Xiguo Yi (2017) Class distribution of externality of human capital in urban China. Economic Science 2, pp. 18-31.
- Xue, Jinjun and Xiaochun Gao (2011) The outcomes of education on income growth and income disparity in urban China. Chinese Journal of Population Science 2, pp. 2-13.
- Yan, Min and Weiguo Wang (2018) The penalty effect of educational mismatch on wages: An empirical study based on micro panel data of China. Journal of Finance Economics 44(3), pp. 84-96.
- Yang, Huixin and Haibin Wang (2015) Returns to education in China: 1989-2011. South China Journal of Economics 6, pp. 1-18.
- Yang, Sui and Binbin Wu (2019) The choice of employment places and income inequality of migrant workers. Journal of Social Development 4, pp.112-133.
- Yao, Chen (2019) Wages return for training of migrant workers. Journal of Zhengzhou University of Aeronautics 37(4), pp. 26-34.
- Yi, Xianglai, Jialu Shi and Xiaoqing Zhang (2018) Search the changes of province wage levels. City problem 2, pp. 67-83.
- Yu, Lingzheng, Xiahai Wei and Tao Lin (2020) Whom labor unions represent on the distribution of wages: Facts and mechanism. Academic Research Journal 1, pp. 87-93.
- Yu, Xianghua, Xuejuan Chen and Bangzhu Sun (2011) Research on ownership change and wage differences among sectors in China: Evidence from household survey data. China Soft Science 7, pp. 50-60.
- Yu, Xiao and Yue Sun (2017) Income gaps between urban residents and rural: Quantile regression analyses based on 2015 migrants dynamic monitoring data. Population Research 41(1), pp. 84-97.
- Yuan, Qingchuan (2015) The research of wage distribution under the union coverage effect and the union members effect: Based on experience of employee-employer matching data in 2012. Journal of Business Economics 8(286), pp. 32-43.
- Yuan, Qingchuan (2018a) The research of wage gap under the trade union coverage effect: Based on employees and employers matching data in 2012. Journal of China University of Labor

Relations 32(1), pp. 100-113.

- Yuan, Qingchuan (2018b) The research of wage gap under the union membership effect: Based on employees and employers matching data in 2012. Journal of Central University of Finance & Economics 3, pp. 100-110.
- Yuan, Qingchuan and Dinghong Yi (2019) An analysis of the migrants' wage distribution and its influences factors in and among Beijing-Tianjin-Hebei region: Based on data of China Migrants Dynamic Survey in 2015. Economy Survey 36(6), pp. 9-16.
- Yue, Changjun (2004) The impact of education on income difference in urban China. China Economic Quarterly 3, pp. 135-150.
- Yue, Ximing, Shi Li and Sicular Terry (2010) Are the high salaries of employees in monopoly industries justified? Social Sciences in China 3, pp. 77-93.
- Zeng, Guobiao and Lin Jiang (2014) Trade opening, skill premium and wage differentials: Empirical study based on CGSS. World Economic Papers 6, pp. 1-16.
- Zeng, Xiangquan and Wenxin Hu (2019) How important beaty is? The impact of physical appearance on income and its mechanism. Journal of South China Normal University (Social Science Edition) 3, pp. 84-92.
- Zhang, Dandan (2004) Marketization and gender wage differentials. Chinese Journal of Population Science 1, pp. 32-41.
- Zhang, Guangsheng, Jiwei Chen, Jinqi Jiang and Jiangying Guo (2016) Gender discrimination, trade gap and gender wage difference of migrant workers: Based on improved brown decomposition approach. Journal of Agro-Forestry Economics and Management 15(3), pp. 290-299.
- Zhang, Guijin and Dong Zhang (2019) The heterogeneity effects of influences of the machine substitution on wages: Evidence from China. Academic Forum 5, pp. 18-25.
- Zhang, Jinhua, Yali Wang and ShanlinWu (2018) Reevaluate the education effect on wage of migrants: Based on CHIP data. Fudan Education Forum 16(2), pp. 68-74.
- Zhang, Juwei and Xinxin Xue (2008) State and non-state sector wage differentials and human capital contribution. Economic Research 4, pp. 15-25.
- Zhang, Kangsi, Cuihuan Liu and Shulei Ding (2018) Research on the wage differences between formal employment and informal employment. Chinese Journal of Population Science 1, pp. 83-94.
- Zhang, Li, Shi Li, William A. DarityJr. And Rhonda Vonshay Sharpe (2014) Hukou discrimination in Chinese labor market. Management World 11, pp. 35-46.
- Zhang, Shaopeng and Hongge Zhu (2019) An empirical analysis of the effect of vocational and technical training on the income of forest regions staff. Forestry Economics 5, pp. 19-26.
- Zhang, Tao (2011) Analysis on wage differences: A quantile regression approach. Statistics & Information Forum 26(11), pp. 50-57.
- Zhang, Weiguo and Zeryu Xiang (2017) Structural Explanation of hourly wage differentials between rural and urban in China: Empirical studies based on Oaxaca-Blinder and quantile decomposition. Economic and Management 5(156), 81-89.
- Zhang, Yi and Jinjun Xue (2009) Class structure and income inequality in China. Gansu Social Sciences 1, pp. 1-6.
- Zhang, Yuan, E. M. Mouhoud and Ying Fan (2012) Heterogeneous social network and rural migrant worker's wage: Evidence from China. South China Journal of Economics 2, pp. 3-

14.

- Zhao, Yuanyan (2017) Research on influence factors of gender wage differentials in urban of China: Baased on the "Employer-employee Matching Data". Social Science in Xinjiang 1, pp. 128-134.
- Zhou, Chuang, Xiaomeng Her and Yi Xu (2017) Wage differentials between migrants and urban residents from employment stability perspective. Research on Financial and Economic Issues 10(407), pp. 132-138.

	K	Mean	Median	S.D.	Max.	Min.	Kurtosis	Skewness	t test ^a	Shapiro-Wilk normality test $(z)^{b}$
All studies (Hypothesis H ₁)	1472	-0.123	-0.115	0.094	0.392	-0.826	10.193	-0.543	-50.160 ***	10.717 ***
Target region (Hypothesis H ₂)										
Urban region	919	-0.114	-0.108	0.084	0.392	-0.589	9.292	0.348	-40.962 ***	9.116 ^{†††}
Rural region	135	-0.184	-0.169	0.124	-0.014	-0.826	8.887	-1.798	-17.247 ***	5.918 ^{†††}
Region unspecified	418	-0.124	-0.115	0.097	0.271	-0.739	8.325	-0.452	-26.209 ***	6.800 ^{†††}
Target corporate sector (Hypothesis H ₃)										
Public sector	24	-0.095	-0.086	0.053	0.047	-0.195	3.512	0.303	-8.771 ***	0.770
Private sector	34	-0.125	-0.117	0.086	0.088	-0.408	5.661	-0.418	-8.415 ***	1.967 ^{††}
Corporate sector unspecified	1414	-0.123	-0.116	0.095	0.392	-0.826	10.199	-0.536	-48.978 ***	10.634 ***
Target period (Hypothesis H ₄)										
1990s or later	315	-0.110	-0.097	0.083	0.088	-0.671	10.421	-1.844	-23.484 ***	7.849 ^{†††}
2000s	689	-0.112	-0.107	0.086	0.392	-0.826	20.610	-1.006	-34.162 ***	10.868 ***
2010s	468	-0.148	-0.153	0.107	0.271	-0.561	4.507	0.457	-29.941 ***	5.420 ***

Table 1. Descriptive statistics of the partial correlation coefficients, t test and Shapiro–Wilk normality test of collected estimates

Note: Null hypothesis: the dustribution of data is a normal distribution; ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

^a *** denotes that null hypothesis that mean is zero is rejected at the 1% level.

^b ††† and †† denote that null hypothesis of normal distribution is rejected at the 1% and 5% levels, respectively.

Figure 1. Kernel density estimation of collected estimates

Note: The vertical axis is the kernel density. The horizontal axis is the variable value. Source: See Table 1 for the number of observations and descriptive statistics.

Table 2. Synthesis of estimates

	(a) Traditional synthesis		(b) Heterogeneity test and measures			(c) Unrestricted weighted least squares average (UWA)					
Legal variable type	Number of estimates (K)	Fixed-effect model (z value) ^a	Random-effects model (z value) ^a	Cochrane Q test of homogeneity $(p \text{ value})^{b}$	I^2 statistic ^c	H^2 statistic ^d	UWA of all estimates (t value) ^{a e}	Number of the adequately powered estimates ^f	WAAP (weighted average of the adequately powered estimates) (t value) ^a	Median S.E. of estimates (MSE)	Median statistical power (MSP)
All studies (Hypothesis H)	1472	-0.092 **** (-354.98)	-0.122 *** (-52.21)	85041.040 **** (0.000)	99.96	2833.7	-0.092 *** (-46.69)	1243	-0.092 *** (-42.90)	0.019	0.998
Target region (Hypothesis H2)											
Urban region	919	-0.087 **** (-281.08)	-0.114 **** (-43.43)	40279.710 **** (0.000)	99.93	1341.66	-0.086 *** (-42.45)	757	-0.086 **** (-38.65)	0.018	0.997
Rural region	135	-0.153 **** (-94.17)	-0.174 **** (-18.31)	3751.320 **** (0.000)	99.71	340.03	-0.153 *** (-17.80)	126	-0.153 *** (-17.21)	0.023	1.000
Region unspecified	418	-0.101 **** (-200.44)	-0.124 *** (-26.02)	38976.320 **** (0.000)	99.82	563.87	-0.101 **** (-20.73)	382	-0.101 **** (-19.80)	0.018	1.000
Target corporate sector (Hypothesis H)											
Public sector	24	-0.080 **** (-23.54)	-0.090 **** (-10.62)	103.050 **** (0.000)	71.86	2.55	-0.080 **** (-11.12)	16	-0.078 **** (-10.18)	0.020	0.976
Private sector	34	-0.128 **** (-27.51)	-0.123 **** (-7.72)	366.920 **** (0.000)	92.10	11.65	-0.128 *** (-8.25)	21	-0.127 *** (-6.32)	0.026	0.998
Corporate sector unspecified	1414	-0.092 **** (-353.23)	-0.122 *** (-51.12)	84499.000 **** (0.000)	99.96	2815.63	-0.092 *** (-45.68)	1207	-0.092 *** (-42.20)	0.019	0.999
Target period (Hypothesis H)											
1990s or before 1990s	315	-0.075 **** (-152.87)	-0.105 **** (-25.70)	14735.520 **** (0.000)	99.80	490.18	-0.075 *** (-22.31)	231	-0.074 *** (-19.40)	0.018	0.989
2000s	689	-0.085 **** (-238.58)	-0.111 **** (-37.60)	31563.520 **** (0.000)	99.95	1971.72	-0.085 *** (-35.23)	535	-0.085 *** (-31.08)	0.019	0.993
2010s	468	-0.138 **** (-230.70)	-0.148 **** (-29.95)	31239.770 **** (0.000)	99.95	2081.65	-0.137 *** (-28.18)	425	-0.138 *** (-26.86)	0.019	1.000

Notes: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

^a Null hypothesis: The synthesized effect size is zero.

^b Null hypothesis: Effect sizes are homogeneous.

^c Ranges between 0 and 100% with larger scores indicating heterogeneity.

^d Takes zero in the case of homogeneity

^c Synthesis method advocated by Stanley and Doucouliagos (2015) and Stanley et al. (2017).

^f Denotes number of estimates with statistical power of 0.80 or more which is computed referring to the UWA of all collected estimates.

Figure 2. Chronological order of partial correlation coefficients (K=1472)

Note: The values in parentheses below the coefficients in the equation are robustness standard errors. ***, *** d* denote statistical significance at the 1%, 5% and 10% levels, respectively.

X7 · 11		Descriptive statistics				
variable name	Definition	Mean	Median	S.D.		
Rural region	1 = if the target region is a rural region, $0 =$ otherwise	0.092	0	0.289		
Region unspecified	1 = if the target region is unspecified, $0 = $ otherwise	0.284	0	0.451		
Public sector	1 = if the sample is limited to workers of state-owned enterprises, $0 =$ otherwise	0.016	0	0.127		
Private sector	1 = if the sample is limited to workers of privately owned enterprises, $0 =$ otherwise	0.023	0	0.150		
Average estimation year	Average estimation year	2005.161	2006	7.008		
Urban residents	1= if the sample is limited to workers who are urban residents, $0 =$ otherwise	0.103	0	0.304		
Migrants	1 = if the sample is limited to workers who are migrants, $0 =$ otherwise	0.192	0	0.394		
Low-percentile group	1 = if the observation is limited to the 30th percentile of the wage level or less, $0 =$ otherwise	0.068	0	0.252		
Middle-percentile group	1 = if the observation is limited to the 30th–75th percentile of the wage level, $0 =$ otherwise	0.063	0	0.242		
High-percentile group	1 = if the observation is limited to the 75th percentile of the wage level or more, $0 =$ otherwise	0.049	0	0.216		
CHNS	1 = if the survey results of China's Health and Nutrition Survey (CHNS) are used as the data source, 0 = otherwise	0.119	0	0.324		
CGSS	1 = if the survey results of the Chinese General Social Survey (CGSS) are used as the data source, 0 = otherwise	0.092	0	0.290		
Other household survey	1 = if the results of a household survey other than CHIP, CHNS, or CGSS are used as the data source, $0 =$ otherwise	0.279	0	0.449		
Enterprise survey	1 = if the results of an enterprise survey are used as the data source, $0 =$ otherwise	0.063	0	0.243		
Panel survey	1 = if the results of a panel survey are used as the data source, $0 =$ otherwise	0.030	0	0.170		
Regular wage	1 = if regular wage is employed for empirical analysis, $0 = $ otherwise	0.707	1	0.455		
Monthly	1 = if monthly wage is employed for empirical analysis, $0 = $ otherwise	0.340	0	0.474		
Daily	1 = if daily wage is employed for empirical analysis, $0 = $ otherwise	0.018	0	0.134		
Hourly	1 = if hourly wage is employed for empirical analysis, $0 = $ otherwise	0.408	0	0.492		
Logarithm value	1 = if a logarithm value of wage is used as the dependent variable, $0 = $ otherwise	0.865	1	0.342		
OLS	1 = if an OLS estimator is used for estimation, $0 = $ otherwise	0.782	1	0.413		
IV/2SLS/3SLS	1 = if an IV, 2SLS, or 3SLS estimator is used for estimation, $0 = $ otherwise	0.057	0	0.232		
Control for selection bias	1 = if the selection bias due to endogeneous labor participation is controlled for, $0 =$ otherwise	0.069	0	0.254		
Occupation	1 = if the estimation simultaneously controls for occupation, $0 =$ otherwise	0.307	0	0.461		
Age/age group	1 = if the estimation simultaneously controls for age or age group, $0 =$ otherwise	0.247	0	0.431		
Work experience/tenure	1 = if the estimation simultaneously controls for work experience and/or tenure, $0 =$ otherwise	0.715	1	0.451		
Health condition	1 = if the estimation simultaneously controls for the health condition of workers, $0 =$ otherwise	0.126	0	0.332		
Firm size	1 = if the estimation simultaneously controls for the size of firms to which workers belong, $0 =$ otherwise	0.096	0	0.295		
Trade union	1 = if the estimation simultaneously controls for trade unions, $0 =$ otherwise	0.044	0	0.206		
Location fixed effects	1 = if the estimation simultaneously controls for location fixed effects, $0 =$ otherwise	0.513	1	0.500		
Industry fixed effects	1 = if the estimation simultaneously controls for industry fixed effects, $0 =$ otherwise	0.439	0	0.496		
With an interaction term(s)	1 = if the estimation is conducted with an interaction term(s), $0 =$ otherwise	0.011	0	0.104		
S.E.	Standard error of patial correlation coefficient	0.024	0.019	0.020		

Table 3. Names, definitions, and descriptive statistics of meta-independent variable

Table 4. Meta-regression analysis of literature heterogeneity

Estimator (analytical weight in brackets)	Cluster-robust OLS	Cluster-robust WLS [N]	Cluster-robust WLS $[\sqrt{d.f.}]$	Cluster-robust WLS [1/SE]	Multi-level mixed-effects RML	Cluster-robust random-effects panel GLS	Cluster-robust fixed-effects panel LSDV
Meta-independent variable (default study type)/model	[1]	[2]	[3]	[4]	[5]	[6] ^a	[7] ^b
Target region (urban region)—Hypothesis H2							
Rural region	-0.0602 ***	-0.0355	-0.0402 **	-0.0430 **	-0.0603 ***	-0.0602 ***	-0.0618 **
	(0.020)	(0.026)	(0.020)	(0.020)	(0.022)	(0.023)	(0.028)
Region unspecified	0.0013	-0.0096	0.0027	0.0019	-0.0025	-0.0041	-0.0432 ***
	(0.014)	(0.020)	(0.016)	(0.016)	(0.016)	(0.016)	(0.016)
Target corporate sector (unspecified)—Hypothesis H		**			**	**	**
Public sector	0.0118	0.0218	0.0096	0.0093	0.0235	0.0242	0.0242
	(0.033)	(0.010)	(0.026)	(0.005)	(0.008)	(0.011)	(0.011)
Private sector	-0.0244	-0.0090	-0.0251	-0.0265	0.0012	0.0015	-0.0015
	(0.028)	(0.024)	(0.026)	(0.027)	(0.019)	(0.019)	(0.017)
Estimation period—Hypothesis H_4	***	*	***	***	*	*	
Average estimation year	-0.0031	-0.0018	-0.0030	-0.0031	-0.0013	-0.0012	-0.0010
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Hukou types (Hukou unspecified)	0.0074						
Urban residents	0.0061	-0.0168	-0.0067	-0.0063	0.0119	0.0120	0.0114
	(0.019)	(0.014)	(0.015)	(0.016)	(0.011)	(0.011)	(0.014)
Migrants	-0.0222	-0.0059	-0.0156	-0.0160	-0.0138	-0.0140	-0.0153
	(0.013)	(0.028)	(0.016)	(0.016)	(0.013)	(0.014)	(0.019)
Wage level percentile (wage level unspecified)	0 0 5 1 0 ***	0.0071	0.0252	0.0256	· · · · · · ·	0.0050	0.0100
Low-percentile group	0.0543	-0.00/1	0.0273	0.0276	0.0299	0.0278	0.0180
	(0.018)	(0.024)	(0.022)	(0.023)	(0.017)	(0.017)	(0.020)
Middle-percentile group	0.04/3	0.0133	0.0355	0.036/	0.0168	0.0145	0.0040
II:-h	(0.018)	(0.020)	(0.020)	(0.020)	(0.018)	(0.018)	(0.022)
High-percentile group	0.0666	0.0256	0.0543	0.0556	0.03/3	0.0351	0.0251
Suman data (CUID-)	(0.015)	(0.019)	(0.013)	(0.010)	(0.010)	(0.017)	(0.021)
CLINS	0.0100	0.0245	0.0012	0.0020	0.0020	0.0016	0.0204 ***
CHNS	-0.0109	(0.0343	(0.0013)	(0.0020)	-0.0030	-0.0016	-0.0204
CCSS	(0.017)	(0.021)	(0.017)	(0.017)	(0.017)	(0.017)	(0.000)
033	-0.0093	(0.0274)	(0.026	(0.029	(0.019)	0.0032	(0.012)
Other household survey	(0.018)	(0.027)	(0.021)	(0.021)	(0.019)	(0.020)	(0.012)
Other household survey	(0.013)	(0.0255	(0.0171)	(0.013)	(0.0100)	(0.0139	
Enterprise survey	0.0076	0.0002	0.0126	0.0124	(0.014)	0.0206	
Enciprise survey	-0.0070	-0.0092	(0.034)	(0.034)	(0.0203)	(0.035)	
Data type (Cross-section data)	(0.027)	(0.040)	(0.054)	(0.054)	(0.054)	(0.055)	
Panel data	0.0249	-0.0018	0.0117	0.0123	0.0196	0.0207	0.0197
I and data	(0.024)	(0.038)	(0.028)	(0.029)	(0.019)	(0.019)	(0.019)
Wage type (Bonus wage)	(01025)	(01020)	(01020)	(0102))	(0.01))	(0.01))	(01020)
Regular wage	-0.0099	-0.0007	-0.0056	-0.0059	-0.0091	-0.0083	0.0013
Regular wage	(0.014)	(0.016)	(0.014)	(0.014)	(0.009)	(0.009)	(0.0013
Wage payment period (annual)	(0.011)	(0.010)	(0.011)	(0.011)	(0.00))	(0.00)	(0.005)
Monthly	0.0292 *	-0.0047	0.0129	0.0128	0.0079	0.0056	-0.0123 *
	(0.017)	(0.014)	(0.016)	(0.016)	(0.013)	(0.013)	(0.007)
Daily	0.0271	-0 0449 **	-0.0142	-0.0130	0.0391 *	0.0378 *	(0.007)
200.9	(0.0271	(0.022)	(0.023)	(0.024)	(0.021)	(0.020)	
Hourly	0.0414 **	-0.0007	0.0219	0.0224	0 0223 **	0.0217 **	0.0178 ***
	(0.017)	(0.019)	(0.017)	(0.017)	(0.011)	(0.010)	(0.001)
	(0.017)	(0.017)	(0.017)	(0.017)	(0.011)	(0.010)	(0.00)

(Continued)

Table 4 continued.							
Estimator (analytical weight in brackets)	Cluster-robust OLS	Cluster-robust WLS [N]	Cluster-robust WLS $[\sqrt{d.f.}]$	Cluster-robust WLS [1/SE]	Multi-level mixed-effects RML	Cluster-robust random-effects panel GLS	Cluster-robust fixed-effects panel LSDV
Meta-independent variable (default study type)/model	[1]	[2]	[3]	[4]	[5]	[6] ^a	[7] ^b
Wage variable type (actual value: Yuan)							
Logarithm value	0.0281 *	0.0243	0.0274 **	0.0270 *	0.0123	0.0096	-0.0130
	(0.016)	(0.015)	(0.014)	(0.014)	(0.012)	(0.011)	(0.008)
Estimator							
OLS (estimators other than OLS)	0.0135	0.0103	0.0162	0.0163	0.0064	0.0058	0.0026
	(0.016)	(0.017)	(0.016)	(0.016)	(0.014)	(0.014)	(0.015)
IV/2SLS/3SLS	0.0059	-0.0112	0.0002	0.0005	0.0122	0.0119	0.0105
	(0.016)	(0.010)	(0.015)	(0.015)	(0.010)	(0.010)	(0.011)
Control for selection bias due to endogeneous labor participation							
Control for selection bias	0.0609 **	0.0639 **	0.0679 **	0.0696 **	0.0615	0.0607 ***	0.0556 **
	(0.027)	(0.030)	(0.029)	(0.029)	(0.021)	(0.022)	(0.024)
Control variables							
Occupation	0.0007	-0.0010	-0.0024	-0.0026	0.0102	0.0097	0.0056
	(0.011)	(0.013)	(0.011)	(0.011)	(0.008)	(0.007)	(0.007)
Age	-0.0123	0.0234	0.0055	0.0065	0.0115	0.0146	0.0871
	(0.015)	(0.011)	(0.015)	(0.015)	(0.017)	(0.018)	(0.071)
Work experience/tenure	-0.0024	0.0161	-0.0005	0.0007	0.0080	0.0082	-0.0091
	(0.015)	(0.015)	(0.015)	(0.015)	(0.014)	(0.014)	(0.009)
Health status	-0.0004	-0.0141	-0.0117	-0.0111	-0.0062	-0.0050	0.0093
	(0.016)	(0.029)	(0.020)	(0.020)	(0.012)	(0.012)	(0.018)
Firm size	-0.0310 *	0.0031	-0.0129	-0.0131	-0.0317 **	-0.0331 **	-0.0416 **
	(0.017)	(0.026)	(0.020)	(0.020)	(0.015)	(0.015)	(0.017)
Trade union	-0.0134	0.1234 **	0.0634	0.0643	0.0023	0.0045	0.0331
	(0.030)	(0.054)	(0.051)	(0.051)	(0.021)	(0.021)	(0.001)
Location fixed effects	-0.0173 *	-0.0383 ***	-0.0228 **	-0.0224 **	-0.0020	-0.0015	0.0007
	(0.010)	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)	(0.014)
Industry fixed effects	-0.0003	-0.0048	0.0004	-0.0006	0.0068	0.0084	0.0186
	(0.011)	(0.012)	(0.010)	(0.010)	(0.007)	(0.007)	(0.008)
Estimation with an interaction term(s)							
With an interaction term(s) (without interaction term)	0.0115	-0.0099	-0.0060	-0.0046	0.0580 **	0.0595	0.0685 ***
	(0.024)	(0.031)	(0.030)	(0.030)	(0.023)	(0.023)	(0.020)
Standard error of patial correlation coefficient							
S.E.	-0.1144	-1.3543 **	-0.3644	-0.3941	0.0744	0.0957	0.2105
	(0.451)	(0.591)	(0.467)	(0.473)	(0.427)	(0.431)	(0.433)
Constant	6.0190 ***	3.5734 *	5.9380 ***	5.9800 ***	2.4447 *	2.3147	1.8033
	(1.619)	(2.100)	(1.703)	(1.719)	(1.488)	(1.550)	(1.819)
K	1472	1472	1472	1472	1472	1472	1472
R^2	0.200	0.338	0.194	0.192	-	0.119	0.011

Notes:

^a Breusch-Pagan test: $\chi^2 = 1069.27$, p = 0.0000

^b Hausman test: $\chi^2 = 29.50, p = 0.4913$

Figures in parentheses beneath the regression coefficients are robust standard errors. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. Source: See Table 3 for the definitions and descriptive statistics of meta-independent variables.

Figure 3. Funnel plot of patial correlation coefficients (K=1472)

Note: The solid line indicates the synthesized effect size by random effects of all studies, while the one-dot chain line indicates the synthesized effect size by WAAP estimation as reported in Table 2.

Table 5. Meta-regression analysis of publication selection bias

	7071	, ,			
Estimator	OLS	Cluster-robust OLS	Multi-level mixed-effects RML	Cluster-robust random-effects panel GLS	Cluster-robust fixed-effects panel LSDV
Model	[1]	[2]	[3]	[4] ^a	[5] ^b
Intercept (FAT: $H_0: \gamma_0=0$)	-2.8691 ***	-2.8691 ***	-2.7968 ***	-2.7870 ***	-2.7526 ***
	(0.480)	(0.870)	(0.820)	(0.832)	(1.013)
1/ <i>SE</i> (PET: H ₀ : γ ₁ =0)	-0.0721 ***	-0.0721 ***	-0.0721 ***	-0.0722 ***	-0.0737 ***
	(0.008)	(0.015)	(0.013)	(0.013)	(0.014)
K	1472	1472	1472	1472	1472
R^2	0.335	0.335	-	0.335	0.335

(a) FAT-PET test (Equation: $t = \gamma_0 + \gamma_1(1/SE) + v$)

(b) PEESE approach (Equation: $t = \gamma_0 SE + \gamma_1 (1/SE) + v$)

Estimator	OLS	Cluster-robust OLS	Multi-level mixed-effects RML	Random- effects panel ML	Population- averaged panel GEE
Model	[6]	[7]	[8]	[9]	[10]
SE	-35.4277 *** (6.747)	-35.4277 ** (14.107)	2.2418 (7.122)	2.2418 (10.274)	-16.4359 *** (6.397)
$1/SE (H_0: \gamma_1=0)$	-0.0885 *** (0.006)	-0.0885 *** (0.012)	-0.0797 *** (0.012)	-0.0797 **** (0.003)	-0.0843 **** (0.012)
Κ	1472	1472	1472	1472	1472
R^2	0.605	0.605	-	-	-

Notes:

^a Breusch-Pagan test: $\chi^2 = 1301.60, p = 0.0000$

^b Hausman test: $\chi^2 = 0.55$, p = 0.4598

Figures in parentheses beneath the regression coefficients are standard errors. Except for Model [9], robust standard errors are estimated. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

	Number	r Test results ^a					
Study type	Study type (K) (FAT) $(H_0: \gamma_0 = 0)$		Precision-effect test (PET) (H ₀ : $\gamma_1=0$)	Precision-effect estimate with standard error (PEESE) $(H_0: \gamma_1=0)^{b}$			
All studies (Hypothesis H ₁)	1472	Rejected	Rejected	Rejected (-0.0885/-0.0797)			
Target region (Hypothesis H2)							
Urban region	919	Rejected	Rejected	Rejected (-0.0838/-0.0788)			
Rural region	135	Rejected	Rejected	Rejected (-0.1464/-0.1436)			
Region unspecified	418	Rejected	Rejected	Rejected (-0.0963/-0.0774)			
Target corporate sector (Hypothesis H ₃)				× ,			
Public sector	24	Not rejected	Rejected	Rejected (-0.0778/-0.0715)			
Private sector	34	Not rejected	Rejected	Rejected (-0.1293/-0.1232)			
Corporate sector unspecified	1414	Rejected	Rejected	Rejected (-0.0873/-0.0715)			
Target period (Hypothesis H ₄)							
1990s or before	315	Not rejected	Rejected	Rejected (-0.0861/-0.0706)			
2000s	689	Rejected	Rejected	Rejected (-0.0827/-0.0733)			
2010s	468	Not rejected	Rejected	Rejected (-0.1349/-0.0922)			

 Table 6. Summary of publication selection bias tests

Notes:

^a The null hypothesis is rejected when more than three of five models show a statistically significant estimate. Otherwise not rejected.

^b Figures in parentheses are PSB-adjusted estimates. If two or more estimates are reported, the left and right figures denote the minimum and maximum estimates, respectively.