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Abstract

Within the dfiliated private-values paradigm, we develop a tractableiricapmodel of equi-
librium behaviour at first-price, sealed-bid auctions. Tdel is non-parametrically identified,
but the rate of convergence in estimation is slow when thelbraurof bidders is even moderately
large, so we develop a semiparametric estimation strategysing on the Archimedean family
of copulae and implementing this framework using particmlambers—the Clayton, Frank, and
Gumbel copulae. We apply our framework to data from low-@reealed-bid auctions used by
the Michigan Department of Transportation to procure roeglsfacing services, rejecting the
hypothesis of independence and finding significant (and)taiiation in cost signals.

Key words: first-price, sealed-bid auctions; copula#iletion.
JEL classification:C20, D44, L1.

1. Motivation and Introduction

During the past half century, economists have made remkrlabgress in understanding
the theoretical structure of equilibrium strategic bebaviunder market mechanisms, such as
auctions, when the number of potential participants istikelly small; see Krishna| [18] for a
comprehensive presentation and evaluation of progress.

One analytic device commonly used to describe bidder mgfivat single-object auctions
is a continuous random variable that represents individpatific heterogeneity in valuations.
The conceptual experiment involves each potential biddeceiving an independent draw from
a distribution of valuations. Conditional on his draw, ad#dis then assumed to act purposefully,
maximizing either the expected profit or the expected wytdit profit from winning the auction.
Another, frequently-made assumption is that the indepangduation draws of bidders are from
the same distribution of valuations; this is often refemeds thesymmetric independent private-
values paradignfsymmetric IPVP). Under this assumption, the researchetloen focus on a
representative agent’s decision rule when describingibguim behaviour.
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At many real-world auctions, the latent valuations of ptidrbidders are probably depen-
dent in some way. In auction theory, it has been typicallyiaed that this dependence satisfies
affiliation, a term coined by Milgrom and Weber [24]. filliation is a condition concerning
the joint distribution of signals. In the case of continusaadom variables, following Karlin
[17], some refer to fiiliation asmultivariate total positivity of order twgor MTP;, for short).
Essentially, underféliation for continuous random variables, th&-diagonal elements of the
Hessian of the logarithm of the joint probability densitysignals are all non-negative; i.e., the
joint probability density function is log-supermodularndler joint normality of signals,fhlia-
tion requires that the pair-wise covariances be weaklytpesiKrishna [18] as well as de Castro
[5] have also noted thaffdiation implies positive correlation; i.e.fldiation is a much stronger
condition than positive correlation.

Investigating equilibrium behaviour at auctions, empillig when latent valuations are af-
filiated has challenged researchers for some timeffoba and Vuong [20] have noted that
identification is impossible to establish in many models mvb@liation is present. In fact, one
result of Lafont and Vuong is that any model within théibated-values paradigm (AVP) is
observationally equivalent to a model within th@lated private-values paradigm (APVP). For
this reason, when admitting dependence, nearly all enapiviorkers have considered models
within the APVP, the notable exception being BrendstrupRadrsch| [1].

Most structural econometric research devoted to invetstig@quilibrium behaviour at auc-
tions has involved single-object auctions within the syrrin@PVP. Examples include Paarsch
[28,/29]; Donald and Paarsch [6, 7, 8];ftent, Ossard, and Vuong [19]; Guerre, Perrigne, and
Vuong [13] (hereafter GPV, for short); Haile and Tamer [lajd Li [21]. Paarsch and Hong
[30] have summarized some of the important empirical worthig area.

Only a few researchers have dealt explicitly with model$inithe APVP. In particular, Li,
Perrigne, and Vuong| [22] have demonstrated non-paramdgittification within the condi-
tional IPVP, a special case of the APVP, while Li, Perrigne] ®uong [23] (hereafter LPV, for
short) have demonstrated non-parametric identificatichimwithe APVP. When implementing
their approach, LPV faced two related problems: first, th¥ bBn-parametric estimator fars
from the curse of dimensionality as the number of bidders ggge; second, their estimator is
plagued by the curse of dimensionality as the number of catesr gets large. Consequently, the
LPV estimator can be slow to converge. Most importantly, éesv, LPV do not imposeflia-
tion in their estimation strategy, so the first-order capditised in estimation need not constitute
an equilibrium.

In this paper, we investigate the advantages of using a seanietric estimation strategy
as a dimension-reducing device to speed-up convergeneeifisplly, we address the curse of
dimensionality stemming from the number of bidders at anctnot the number of covariates.
Under our approach, we also use the properties of a pantifamaily of copulae to impose
affiliation, thus ensuring an equilibrium is satisfied by the sugament equation. We focus our
efforts on diliation within models of first-price, sealed-bid auctiotiteg most important auction
format used in practice, at least in terms of the value of g@odl services either sold or procured.

Our paper has seven remaining parts. In the next section rieftytdefine diliation and
explain why it is used in theoretical models of auctions. &ese the copula is central to our
analysis, in section 3, we present a brief review of the fheoncerning copulae. Subsequently,
in section 4, we introduce a simple model of bidding at finst4y sealed-bid auctions in which
affiliation is imposed on the copula to guarantee a unique, nooegpure-strategy equilibrium.
In section 5, we propose a semiparametric estimator, demabing that it is consistent and
deriving its asymptotic distribution; we also demonsttht the proposed estimator attains the
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optimal rate of convergence. In section 6, we investigagestimall-sample properties of our
estimator using Monte Carlo methods, while in section 7, p@yaour methods in an empirical
investigation of low-price, sealed-bid, procurementicact auctions held by the Department of
Transportation in the State of Michigan. We summarize anttlemle in section 8, the final
section of the paper. In an appendix, we collect several latartand their proofs) that are too
cumbersome and detailed to include in the text of the paperaleo document the creation of
the data set used.

2. Definition and Use of Afiliation

Suppose valuationg;, Vo, ..., V, have joint probability density functiofi,(v) wherev col-
lects {1, o, . . ., Vi), with lower-case letters denoting realizations of upgese random variables.
Considen andv”’. The random variableg are said to beféliated if

(V' VvV AVY) 2 fu (V) v (V) 1)

where
(v v V') = [max(v,, Vi), max@, v3). . ... max@, viy)]

denotes the component-wise maxima/odndv”’, sometimes referred to as tjun, while
(V' AV’) = [Min(vy, V7). min(v. v3). ..., min(v, v;))]

denotes the component-wise minima, sometimes referresl ttoeaneet Affiliation is suficient

to guarantee conditions important in delivering a uniquenatone, pure-strategy equilibrium
(MPSE). de Castro_[5] has also noted thiliation is a stronger condition than is necessary to
guarantee a unique MPSE.

3. Some Results concerning Copulae

The main analytic device we use to organize our analysi®isdhula Nelsen [26] has provided

a detailed introduction to the theory of copulae. Here, wigpdy repeat some basic facts that are
relevant to our later work as well as establish a notatiorwhat follows, for expositional rea-
sons, for the most part, we restrict our discussion to katartopulae, but the results generalize
to the case oh variables easily. Given two variabldd; andU,, a bivariate copul&@(uz, uy) is

a continuous function having the following properties:

1. Domain() = [0, 1]%;
2. C(u,0) =0=C(0, up);
3. C(ug,1) =y andC(1, up) = uy;
4. Cis atwice-increasing function, so
c(ul, ud) - (W, ul) - c(ul, ) + C(Wd, W) > 0

O 0 (L (2 2 0 1 0 1
for anyuy, us, ug, U € [0, 1]%, such thau;] < u; andu; < u;.
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BecausdJ; andU, are both defined on the unit interval, they can be viewed genmirandom
variables withC(us, u) being their joint distribution function. Alternatively); andU, can be
viewed as the cumulative distribution functions of two ramdvariablesv; andV, which are
collected in the vectoy'. In this case, their marginal distribution functiofRg(v;) andF,(v,) are
linked to their joint distributiorFy (v1, v2) by

Fv(Vi, V2) = C[F1(v1), Fa(v2)].

One attractive feature of copulae is that the marginal cativé distribution functions do not
depend on the choice of the dependence function for the tadora variables in question. When
one is interested in the association between random vasabtbpulae are a useful device to use
because the dependence structure can be separated fronarthi@ahcumulative distribution
functions.

We know, too, from Sklar's Theorem, that the cop@lalways exists, and is a unique function
linking Fv (vy, v2) with F1(v1) andF,(v,). Of course, whelv; andV, are independent, the copula
is a trivial function as

Fv(vi, Vo) = F1(v1) X Fa(v2).

Also, if we introduce the copulae
U (ug, Up) = min(ug, Up)

and
B(ug, Up) = max(Quy + up — 1),

then the following inequalities hold:
B(ug, Up) = max(Qug + up — 1) < C(ug, Up) < min(ug, Uz) = U(ug, Up),

which are known as theréchet—Hogding bounds

Consider nows; andS, which are, respectively, two strictly increasing funcsasf V; and
V>, denotedr1(V1) ando,(V2). Denote the cumulative distribution functions ®f andS, by
Gi1(s1) andGy(s), respectively. It is important to note that

C[G1(s1), Ga(%)] = C(F1 |07 (s1)] Fa |03 (s2)]) = CIFa(va), Fa(va)]

To wit, the copulae of two random variables and two striatigreasing functions of those two
random variables are identical. This result is TheorenB2fNelsen [26].

Different families of copulae exist. A simple, and commonlyeligamily of copulae that
admits non-linear dependence is thehimedearfamily, which is uniquely characterized by its
generator functiog(-) where

Celur, W) = £7[¢(ur) + (W) 2

Here,/(-) is a convex, decreasing function. Note, too, #(@) must equal zero angt*(u) must
be zero for any exceeding;(0). These conditions are both necessary arfficgent for C, to
be a distribution function. Copulae within the Archimedéamily have the following bivariate
joint density function:
¢ (Fv){ (Un)g' (uz)
[C(FE
4
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Table 1: Commonly-Used Archimedean Copulae

Member Copula Z(u; 0) Domain

Clayton (U + Uy — 1y u?-1) 0 € [-1, )\ {0}
[exp(-fua)-1][exp(-fup)—1] 6u)-1

Frank -1 Iog{l+ == T ;} —Iog[‘Z‘X‘;(_HL;_l 6 € (—o0, )\ {0}

Gumbel exp{— [(— logu;)? + (- log uz)"] "} (~logu)? 6 €[1,00)

which generalizes naturally tevariates.

Three commonly-used members of the Archimedean family plulze are theClayton
Frank, andGumbelcopulae. In table]1, we present the copula and generatotidusoof each
as a function of a dependence paraméteiVhat interpretation can be given to the dependence
parametep? Consider the Frank copula: in the bivariate case, thedasge positive value of
0, the greater the concordance, positive dependence. Onhteetand, a very negative value of
0 indicates negative dependence. Independence obtainséndpgroaches zero. Note that, for
the Frank copula, when exceeds twog is restricted to be positive because a negativeould
imply a non-monotonic inverse-generator function; seargda 4.22 in Nelsen| [26]. Similar
interpretations exist for the Clayton and Gumbel copulakam be also found in Nelsen [26].

M{ller and Scarsini [25] have characterized various notainmsitive dependence, such as
MTP, andconditionally increasingness in sequer{€aS) for Archimedean copuI&eThey have
also presented a general condition that the generator oftginaay Archimedean copula must
satisfy in order to guarantee that M Rolds (cf. Theorem 2.11 in their paper).

For the Frank copula, Genest [11] has demonstrated thatetheant condition fototal
positivity of order two(TP,) coincides with the condition that guarantees a monotamnierse-
generator function when exceeds two; viz.§ must be positive. Although Genest’s condition
for TP, only concerned bivariate copulae, it can be applied to waritite Frank copulae, too.
For it is well-known that a function is MTHf and only if it is TP, in all pairs of its arguments.
For the Clayton copula, the paramefenust be positive if that copula is to satisfy J ®hile the
parametep of the Gumbel copula must be (weakly) greater than one ifdbptila is to satisfy
TP,.

4. First-Price, Sealed-Bid Auction Model with Affiliation

We consider a model in which each o> 2) potential bidders draws a valuatidhfrom
the joint distributionF, (v) whereF;(v;) denotes the marginal cumulative distribution function of
bidderi. Now, by Sklar's theorem, there exists a unique copula fanat such that

Fv(Vv) = C[F1(v1), F2(V2), . .., Fn(vn)].

For notational simplicity, however, we consider the casensk;(-) is the same for all bidders
and equal$(-); this is thesymmetricAPVP. The extension to the asymmetric APVP is straight-
forward, but incredibly cumbersome and tedious, notatiprepeaking. Under the symmetric
APVP,

Fv(v) = C[Fo(v1), Fo(Vv2), ..., Fo(vn)].

1We are grateful to Professor Alfred iMer for sharing with us his extensive knowledge and insigtoncerning
MTP; and the Archimedean family of copulae.
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LetV_; denote ¥, ..., Vn), soV without V;. The following lemma is key to our derivation of
the equilibrium bid function:

Lemma 1. Assume that ¥(v1, ..., V,) is @ symmetric distribution that can be expressed as
Fv(Vi,...,Vn) = C[Fo(V1),. .., Fo(vn)]

whereC is a copula and g(-) is the marginal distribution ofiv The conditional distribution
Fv_ivi (Vo, ...Vnlv1) can be expressed as

FV?1|V1(V2, ...Vn|V1) = C]_[F()(Vl), Fo(Vz), ey Fo(Vn)]
where(; is the partial derivative o€ with respect to the first component.

Proof.

Let fy(vy,...,V,) denote the joint density function relatedRQ(vy, .. ., Vn). Now,

Fv(Vi,....,Vn) = C[Fo(v1),...,Fo(vn)]

V1 Vi
ff fy(Uy,...,Uy) duy - - - dup.

Differentiating both sides of the last equality with respect tgields

Vo Vn
Cl[Fo(Vl),---,Fo(Vn)]fo(Vl)=f f fv(Ve, U, ..., Up) dus - - - dup.

Thus,
[ [ fy (Ve Up, ., Un) dp -+ dup
fo(v1)

But the left-hand side of equatidn/(3) is just_,v, (V2, -..Vn|V1), SO the desired result obtains.

Note that the assumption of symmetry is unnecessary to aafpwe use it to simplify
notation as we shall only investigate the symmetric APVPuna@mpirical work below. Note,
too, that at this stage no structure has been assum@@l)ofSpecifically, we have not imposed
affiliation. Affiliation is a suficient condition assumed by Milgrom and Weber [24] to guaant
a unique MPSE in the game specified below.

Within the symmetric APVP, we can consider the behaviournyf lsidder so, without loss
of generality, we focus on bidder 1 who has valweand is assumed to maximize his expected
profit

= C1[Fo(va). ..., Fo(vn)]. ©))

(Vi = s1) PrV2 < 07(s1),..., Vi < 0 (s0) Vi

Eln(s1,v1)]
= (w1 — 51)C1 (Fo(va), Folo (1)l ..., Folo(su)])

by choice of bidding strategys, whereo(-) denotes the strictly increasing bidding strategy and
where the second equality follows from Lemma 1. Under symynand after some algebra, the
first-order condition yields

C1o[Fo(V1), ..., Fo(v1)]
Ci1[Fo(v1),...,Fo(v1)]

o’ (v1) = [v1 — o (va)](n = 1)fo(v1) (4)

6



A sufficient condition for equation (4) to characterize a uniqueS#Hs that the copul&()
satisfy MTR, which we now assume it does.

IntroducingGo(-) to denote the marginal distribution of equilibrium bidslag(-) to denote
its corresponding probability density function, we canlggpe GPV approach which involves
noting that

Go(s1) = Fo(v1)

and

Thus, re-arranging terms of the first-order condition inatn (4) yields

C1[Go(s1), . . ., Go(s1)]
(n - 1)go(s1)C12[Go(s2), - - - Go(s1)]”

where we use the fact that the copdlf) is invariant under strictly-increasing transformations
of its arguments.

Vi=s+ ®)

5. A Semiparametric Estimator

We frame the intuition behind our estimation strategy im®iof the previous literature and
then, subsequently, demonstrate parameter consisted@sgmptotic normality of our estima-
tor later in this section. Consider a sampleTofuctions at which no reserve price exists, so
issues of participation can be safely ignored. In this ceaeh of then participants has tendered
a bid at theT auctions, so given the following data:

(S},

one can non-parametrically estim&g(s) andgy(s) using the methods proposed by GPV. Denote
these estimates b§o(s) andTo(s). From these, again using the sample data, one can then
estimateC[Fo(vy), . . . , Fo(va)] non-parametrically using standard methods for copuae; for
example, Nelsen [26] as well as Brendstrup and Paarsch fHe@®on these, one can then form
the pseudo-values according to

C1[Go(Sk). - - - » Go(Sit)]
(n = 1)Go(Sit)C12[Go(Si)s - - ., Go(Sit)]

Vie = Sit +

Note, however, that standard kernel-smoothing technitygisally do not guarantee that(.)
satisfies MTR. However, if the true copul&®() satisfies MTR, thenC(-) will converge in
probability toCO(-).

In addition, ifn is even moderately large, then a non-parametric estimétbeaopulaC(-)
may be slow to converge. Thus, we advocate using semipaiametthods. In particular, one
can still estimate botksg(s) and gg(s) non-parametrically, but now put some structure on the
copulaC(:). For example, suppose tha(:) is a member of the Archimedean family which is
uniquely characterized by the generator functf¢in

One flexible way of estimating the generating functig) would involve introducing a fam-
ily of shape-preserving polynomials. One would then ediintlae coéicients of these polyno-
mials. The estimation strategy would involve allowing thember of terms in the polynomials
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to increase as the sample size increased, but at a rate wlsldwier than that of the sample size.
Sieve estimation is an example of such a method; see, forgram@hen and Shen [3]. A draw-
back of this approach is that the polynomial approximatimiitg-) need not satisfy MTE so the
first-order condition used to define the pseudo-valuati@esimot correspond to an equilibrium.

Alternatively, consider a family of copulae that is known tapsome finitep-dimensional
parameter vecto, soC(-; 8). A number of members of the Archimedean family have simple
parametric representations which can be easily consttameespect fiiliation, MTP,. When
the true copul&®(-) belongs to a parametric family

C={Cy, 0€0)

defined by the vecto#, then a parameter-consistent and asymptotically-norstahator ofé°,
the true value, can be obtained by applying the method of maxi likelihood.

Now, under the hypothesis of equilibrium, from Theorem 2.df Nelsen [26], we know
that the parameter vecté? which characterizes the degree diltion in the joint distribution
of valuations is the same parameter vector which charaetethe degree offfdiation in the
joint distribution of equilibrium bids. Thus, we can focus observed bids when estimating the
dependence in unobserved valuations.

Thus, we estimateg(s), the marginal cumulative distribution function $fusing

n

_ 1 &
Go(9) = = ; Z 1(Sit < 9.

i=1

Here, [/(nT + 1)] is used to scale the cumulative sum in the definition ofa@hwpirical dis-
tribution function to avoid boundary problems encountendten implementing the copulae.
Subsequently, we inse@q(-) into the logarithm of the likelihood function and maximiwgth
respect to the parameter vect? Becausésy(-) is different from the true population cumula-
tive distribution functionG(-), we refer to this method gsseudo maximum-likelihoo@®ML)
estimation.

Of course, ifC° depends on a parameter, then so too does the supp@@(()f so one of
the regularity conditions imposed by maximum-likelihoatimation is violated. To see this,
consider the following fully parametric model where the giaal probability density function
depends on a vector of unknown parameterso fo(v;y). Under this assumption, not only
does the marginal probability density function®fepend ory, it also depends on the copula
parameter vectd?, sogo(s; v, #). In addition, the upper bound of support®fiepends oty and
0, so

v<s<§y.60 =0

wherev andv are the lower and upper bounds of suppor¥pfespectively.

What to do? Well, it turns out that, under our proposed apgroame can ignore this support
problem. In fact, this is one of the most compelling featwesur approach. To see how this
works, consider the simple case wherés three. The joint density function of bids, can be

2Fermanian and Scaillet [10] have shown that the bias is smailder a two-step approach than when the model is
estimated at one go—i.e., when the parameters of the marggtabdtion and those of the copula are estimated simulta-
neously. Furthermore, they have argued that there is “tittlese but lots to gain from shifting towards a semiparametric
approach” in terms offéiciency.



written in terms of the copula and the marginal cumulatiaribution and probability density
functions ofS at auctiort as

C123Go(su1; 7, 6), Go(S2t; 7, ), Go(Sst; 7, 0); 01do(Sut; ¥, 0)9o(Szt; 75 0)Fo(Sat; ¥, 6),
the logarithm of which (when aggregated overthel,..., T auctions) is then

.
> 109(CradGolsui 7. ). Go(xi . 6), Golsaii 7. 6); 6]) +
t=1

log[go(sw; 7. 0)] + log[do(szt; 7. 6)] + log[do(sat; 7, 6)].

As mentioned above, one of the regularity conditions usguidee the parameter-consistency of
the maximum-likelihood estimator is violated becas&e ), the upper bound of support of the
strategy, depends on the parameters in the logarithm oifkdléhbod function.

Consider now our semiparametric, PML estimator. A majffiedénce between our approach
and the fully parametric approach is that we do not specifgmpatric functional forms foFg(-)
and, consequentlo(-). Instead, we use the observed bids to estir@glg), which can then be
used to estimatgy(-). UsingGo(-) andgy(-), we then maximimize, with respect o

R
D l0g(C12dGo(su). Go(sz), Go(sa); 6])

t=1

instead of

.
> l0g(C12dGo(su), Go(sz). Go(Sa); 6]) + 10g[Go(s1:)] + 10g[Go(Sa1)] + 10g[Go(Sa1)]-

t=1

Clearly, the upper bound of suppay, ) still depends or®, but this does not cause us any
technical problems because, when we search 8ye@p(s;) is always positive as it does not
depend or#, unlike in the fully parametric case, so it cafiextively be ignored. In the fully
parametric approach, valuespfindé can result irge(st; ¥, 8)'s being zero, so its logarithm is
then undefined.

5.1. Asymptotic Properties of the Estimator

As mentioned, given an initial estimaB&(-), we propose to estimate the copula dependence
parameter by maximizing the followingseudo log-likelihoodunction:

with respect to the unknown parameter vedforhaving constrained to respect filiation,
MTP,. Thus, the PML estimatd is

6 = argmax £(6).
4

As noted by Chen and Fan [2], the mairifiiulty in establishing the asymptotic properties
of @ is that the score function and its derivatives can approafihity (become undefined) at
9



the boundaries of the space under alternative choices afl@dpnctions. To circumvent this
problem, Chen and Fan |[2] introduced a weighting functidmeiTapproach is as follows: first,
they established convergence of the non-parametric éstirfaa the marginal distribution in a
weighted metric and, then, they established the asympobigerties of the copula dependence
parameter(s). Specifically, the weighting function is ¢onged so that it equals one when the
score function and its derivatives are defined at the boyndénerwise, the weighting function
is defined to be some smooth function that becomes zero abtiredaries—zero and one. Al-
though Chen and Fan |[2] investigated the estimation of @paked semiparametric time-series
models using the copula to model the joint distribution & time serie¥; andY;_;, leaving the
marginal distribution unspecified, their weighting-fuonctapproach can be applied in our case.
We make the following assumptions that apply to our auctjmplieation:

Al. {(Sy,.. .,Sm)}tT:1 is a random sample from the joint distribution modelled by tlopula
CIGY("), - .., GY(-); 6°] whereG{(-) is absolutely continuous with respect to Lebesgue mea-
sure on the real line ar@(., . . ., -; 8°) is the true parametric copula fd4, . . ., Snt), which
is absolutely continuous with respect to Lebesgue measuf@, @]", and does not attain
either the lower or the upper bounds oeEhet—Hofding described in section 3.

A2. 6° € ®, a compact set ilRP, and&[4s(U1, ..., Un; 6°)] equals zero, if and only i# equals
6°, where
Cg(Ug, ..., Un; 0) = VglogCy. n(ug,...,Un; 6).

,,,,,

A3. £y(uy, ..., un; ) is defined for @, ..., un) € [0, 1]" x ® and for all® € @; €4(us, ..., Un; 6)
is Lipschitz continuous & almost surelyifg;(us,...,uy; 6) fori = 1,...,n are defined
and continuous iny, ..., Un; 8) € [0,1]" X ©.

A4. &fsupce [1te(U1, . .., Un; B)Il10g[1 + [[€g(U1, . ..., Un; O)II]} < 0.

AS. E{SURp ceg, II€0i[G(S1t); - - -, G(Sny); O]IW(Ui)} < oo whereG; equalsiG € G : |G -
G8||g < 6} with G being the space of continuous probability distributionsrate support
of Sit, andw(v) denotesy(1 — v)]* for v € (0, 1) andé < (0, 1).

Note that these assumptions are adapted from those in Clddraan [2]. While Chen and Fan
considered time-series data with two variabfeandY;_1, we consider data from a crpss—section
of nvariables 81, ..., Snt). The following proposition states the consistency restit

Proposition 1. Under A1-A5,
05 6.

The proof of Propositioh 1, which follows closely the prodfRyoposition 4.2 in Chen and Fan
[2], is omitted as it is straightforward. For the asymptdatistribution, following Chen and Fan
[2], we make the following assumptions:

10



A6. (i) A2 is satisfied withg in the interior of@®; (ii) B = —&[£g4(U1. ..., Up; 6°)] is positive
definite; (iii) = limt_,., Var(VTA7) is positive definite where

1« .
AT = T Z Co(Us,...,Up; 00) + Zwi(ui)
t=1 i=1

with

(iv) 0=06°+ op(1) and su9|[§o(s) - Gg(s)] /w[Gg(s)]| = Op(TY/?) wherew() is defined
in A5.

AT. Log(U1,...,Un; 0) andfyi(uy,. .., Uy 0) fori = 1,...,n are all defined, and continuous in
(U, ..., Un,0) €[0,1]" x Int(@).

A8. lItis valid to interchange the order offtérentiation and integration &§[G,(sw), . . ., Gg(sm); 0,]
with respect to; € (0, 1) where{(6,.G,) :n€[0,1]}) C 5 = {(0.G) e O x G5 : |10 - 0°|| <
¢} for a smallg, is a one-dimensional smooth pathip.

A9. Both&{suRyger, I€olG(Sw). - - .. G(Sny); A1} < oo andE{ll Ly Wi(U)II?} < oo
A10. &(sURyc)er, I1ao[G(S); - - -, G(Sm); ]I} < oo.

Al1l. &{SURge)er, [160i[G(Sw). - - .. G(Sn); O] IW(Ui)}Y < o fori = 1,....n.

These assumptions are modified versions of those in Chenaanddf because we consider data
from a cross-section case, while they consider data frorme-tieries. We can now state the
following result concerning the/T asymptotic normality o).

Proposition 2. Under A6-A11,

VT(6-6° S N(O,B1ZBY).

WereGg(-) known, then}., ‘Wi(U;) would disappear fronAr and, thus, fron. In other
words, the terny;!; ‘Wi(U;) is introduced becauﬁg(-) is unknown and must be estimated.

For ease of exposition, the preceding asymptotic resulte established for the case where
auctioned objects are homogenous. The results can, howeveeadily extended to the case
where the auctioned objects are heterogenous and areiooerditon ad-dimensional vector of
covariatesX.

11



5.2. Optimal Uniform Convergence Rate: Estimatorpf f

Having obtained the PML estimatér we can now calculate the pseudo private-values. To
this end, in addition to the non-parametric estimator ofrttagginal cumulative distribution, we
define the non-parametric estimator of the probability dgrfisnction as follows:

~ 1 L S—Sj
90(5)=mt=lzkg( hg t)

i=1

wherehy is a bandwidth andy(-) is a kernel with a compact support whose lengttyisLet Smin
and Spax denote the minimum and maximum of th& observed bids, and define the pseudo
private-value corresponding & as

) C1[Go(Sk)....Go(Sit)] ; ) ) _
Vi = {50 S D(s0CuGals0.GalE] | omin Paa/2 < Sit < Smax— pghg/2
oo otherwise.

Note that, here, the trimming, which follows GPV, is necegsmcauseay(-) is biased near the
boundaries. The pseudo private-valdascan then be used to estimate the marginal probability
density function of private values via

wherehs is a bandwidth and;(-) is a kernel with compact support.
Since we can also estimate the marginal distribution ofgpeiwvalues by

T n
Fo) = =2 3° 3 1V <)

t=1 i=1

we can now estimate the joint densityroprivate values by

'F\/(V]_, cee Vn)
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GPV studied the optimal rate of uniform convergence of the-parametric density estimator
fo(-) when then private values are independent. In this case, the privdte wan be expressed
2 Go(Sit)

(n - 1)go(Sit)

and the pseudo private-values can be defined accordinglynk out that under suitable regular-
ity conditions, we can establish the optimal rate of unif@onvergence fofg(-), which is given

in the next proposition.

Vit = Sit +

Proposition 3. When (i) §(-) has R bounded, continuous derivatives inside its suppidrt; (

Ci(u,...,u;0)

H =
.6 Cia(u,...,u;6)
12



is continuously dferentiable in both u and in (0, 1) x Int(®) with all derivatives being bounded
in absolute value; and (iii) fi= cq(log T/T)Y@R3) with hy = c¢(log T/T)Y®*3), then

sup | fo(v) = fo(V)| = O((log T/T)F@R-3)) almost surely
veg(V)

for any closed inner subsé(V) of the support of -) where (log T/T)?¥@R+3) is indeed the
optimal uniform convergence rate for two-step non-parainedstimators of the densityy(f)
from the observed bids.

Proposition 3 follows directly from Theorems 2 and 3 in GP\¢dngse of the dierentiability of
H(u, §) assumed in (ii) above. A comparison of our estimdigr) to the one in GPV indicates
that our estimator behaves (asymptotically) in the same agathe one in GPV provided that
(i) is met: once this condition is satisfie;1[Go(Sit)s - - - » Go(Sit)]/C12[Go(Sk)s - - - » Go(Sit)]},
which is nowH[Go(Si), 8], behaves likeSq(Si), at least asymptotically, so

S + 1 C1[Go(Sh), - - -, Go(Sit)]
i (n — 1)@0(Slt) 512[50(Sit), ey Go(sit)]

behaves like _
Go(Sit)

itt T m o

(n = 1)3o(Sit)
at least asymptotically. In particular, as in Lemma B2 in GR¥ can show that the uniform rate
of convergence ofi[Gy(Si), 8] over an expanding subset is the same as th&(;;), which is
(log T/T)RD/(2R+3) Fyrthermore, because of this proposition, and the way iolwive estimate
the joint density of private values, we can obtain the santena uniform rate of convergence
for the joint density estimator of private values, whichteted in the following corollary.

S

Corollary 1. Under the assumptions of Proposition 3, the optimal unifoomvergence rate of
fv(,...,-) is also(log T/T)R/(@R+3),

The result given in Corollary|1 is worth some discussion.niplies that the joint density of
private values can be estimated at the same rate as the aladgimsity of private values. The
semiparametric nature of our approach—imposing a parasreetpula specification for the joint
distribution of private values (and, hence, bids) whilevieg the marginal distribution of bids
unspecified—delivers sficient structure to guarantee this rate of convergence. ,thagwo-
step nature of our estimation strategy parallels that dened by GPV. Consequently, the con-
vergence rate is faster than the rate of the fully non-pataeriePV estimator.

Following Theorems 2 and 3 of GPV, Propositidn 3 and Corgllacan be readily extended
to the case of heterogenous objects; i.e., the probabditgity and cumulative distribution func-
tions can be conditioned ondxdimensional vector of covariates, vizX. Then, the optimal
uniform convergence rates for boff(:|-) and fy (-, ..., ") are (logT /T)¥@Rd+3)_ Of course, in
this case, the non-parametric estimator&gfsx), Go(sx), and fo(vx) need to be accordingly
modified following GPV.

As mentioned above, the LPV estimatofieus from the curse of dimensionality in two ways.
The first is the dimension—viz., the number of bidders at the auction, which determthes
dimension of joint density of private values; the secort] the dimension of the covariate vector.
We have demonstrated that, under our approach, the optateabf convergence obtains when

13



a parametric copula is used because this reduces timension to one; thd dimension still
remains. Our method is especially useful when the numberdofelss is large. Our estimator,
however, still does not address the problem caused by a tamyder of covariates. In this
regard, it would be useful to consider possible extensidmgiosemiparametric estimator. One
such extension would involve a single index model, which barused to reduce the curse of
dimensionality introduced by. Of course, the price of the single-index assumption is aggoin

of flexibility and generality.

Note, too, that when estimating the underlying distribuitad private values using the ob-
served bids, our semiparametric approach specifies a parar@pula with a dependence pa-
rameter, while nonparametrically estimating the margiigttibution of the private values. There-
fore, our semiparametric estimator igtdrent from most of the semiparametric estimators de-
rived within a regression framework; for example those igttidhy Newey and McFadden [27].
The objective in that reseearch is to estimate the paracrrt of the model, while treating the
nonparametric part as a nuisance parameter (albeit of anténdiimension). Despite thisfiier-
ence, our estimator of the dependence parameter atiéirmsite of convergence (see Proposition
2), which is the common rate for the class of semiparamesticnators studied by Newey and
McFadden [27].

6. Some Monte Carlo Results

Below, we describe a Monte Carlo experiment designed to Bgketion the small-sample
properties of our estimation strategy. In the tradition led theoretical literature concerning
auctions, our model of bidding in section 4 was developediims of valuations for an object to
be sold at auction under the first-price, sealed-bid forrBaialed-bid tenders are often used in
procurement—i.e., low-price, sealed-bid auctions at whittiyer (often a government agency)
seeks to find the lowest-cost producer of some good or serBieeause our empirical example
in section 7 involves investigating procurement of roadiriseing by a government agency, our
simulation study is couched in terms of a procurement anctor the case of low-price, sealed-
bid procurement auctions, we collect several lemmata aeid fioofs in an appendix to this
paper.

In all of the experiments, the simulated data involved adated Pareto random varialle
(for costs) having the following marginal cumulative distition function:

Fc(c) - Fc(9)

[Fo(© - Fe(O] ©)

Fo(c) =

where
Yo Y1
Fe(0) = 1—(?) 0<y0<C 1<y

Our simulation study involved samples of sikequal fifty, one hundred, and two hundred with
n of three bidders; each sample was replicate@D0 times. The lower bound of support, the
lowest cosftc, was one, while the upper bound of support, the highest@osts three. The
parameters of the Pareto distribution weggeequal one angl; equal two.

To compare estimators, we considered the strategies popysGPV and LPV as well as our
copula approach for three members of the Archimedean fanile Clayton, Frank, and Gumbel
copulae, which are the most frequently used copulae in écapapplications. The Archimedean
family was discussed in section 3 and copula-specific egugtieeded for estimation, such as
the survival representation, are presented in an appendixst paper.

14



6.1. Performance using Independent Data

While the focus of our research concerns auctions in the peesef dfiliation, it is useful
to compare the performance of the estimation strategies wigmals are independent. Such an
analysis provides a benchmark to contrast the performdregigen strategy when dependence
is introduced. In addition, researchers may not krovantewhether a given data set contains
dependence, or not, so there is value in investigating th®noeance of our semiparametric
estimator, which nests independence as a special case.

In the case of independence, we first generated uniform dirawwsU (0, 1). To convert the
i uniform drawu; into a draw from the truncated Pareto distributmywe simply inverted the
cumulative distribution according to the following fornaul

Yo
(1-u[Fe(® - Fe©)] - Fe@) "™

Simulated costs; were then mapped into simulated blgsising the following symmetric equi-
librium bid function:

J 1= Fo(w]™* du

[1- Fo(c)]™*
whereFq() is the truncated Pareto distribution specified in equaf@nand the integral was
computed numerically using quadrature.

The estimation procedures proposed by GPV and LPV are diedus detail in their respec-
tive papers. When implementing their estimators, we emplalye kernel function and adopted
the optimal bandwidths they suggested. To implement ounleggpproach, we first modified the
approach of GPV to estima€ay(b) andgg(b) non-parametrically using the following estimators:

bi =p(ci) = ¢ +

_ 1 T n

Go(b) = nT+1;;l(bit <b) @)
and T

- 3 1 - b — by

go(b)_m;;K( . ) ®)

Again, the division by §T + 1) rather thamT is a rescaling to avoid numerical complications
arising at the boundary of the copula; e.g., recall (frontieac3 above) thaC(1, u,) equalsu,
andC(uz, 1) equalay;. We employed the triweight kernel

«(u) = g—;’ (1- u2)3 1(lul < 1)

with bandwidth s
h=d (5) (T +1)71°

whered equal 2978 is the bandwidth transformation constant frodrdde [15] andb"was the
standard deviation df which is the vector collecting the da{{abit}{‘:l}tT:l. We then estimated
by the method of PML using the following pseudo log-likeltfabfunction:

;
L(6;b) = " log(c; [Gobr), Go(bz), Go(ba); 6])
t=1
15



Table 2: Performance of Methods using IID Data, MSEP

Method T=50|T=100| T =200
GPV 0.00188| 0.00105| 0.00058
LPV n/a | 3.15053| 0.02362
LPV (log transform)| 1.13816| 0.00945| 0.00603
Clayton 0.00176| 0.00100| 0.00055
Frank 0.00185| 0.00103| 0.00057
Gumbel 0.00194 | 0.00111| 0.00065

where
3%C;(uy, Up, U3)

C(ug, Up, Uz) = 9ULOU0Us

Thus, the PML estimatat is defined by

6 = argmax £(6; b).
0

Using 8 as well asGy(b) anddy(b) from equations (7) and (8), we then computed estimates of
the partial derivatives of each respective survival copgleording to

Su(b) = S1[1 - Go(by), 1 - Go(by), 1 — Go(by); 4]

and _ _ _ _ .
S12(l) = S12[1 — Go(bi), 1 - Go(by), 1 — Go(b); ]

when we were interested in recovering the pseudo-Gastsociated with bidh. We then used
our Go(b) from equation[(8) in conjunction witﬁl(b) andglz(b) to compute the pseudo-cost
associated with any bid
fl(b)~ . ©)

(n = 1)3o(b)S12(b)
To account for biases, near the boundaries, that obtairubesae kernel-smoothed the density,
we only used the bid function in the prior step to recover th&t @ the observed bid was in the
range p + h, b — h] whereb was min{b;} andb was maxby}.

By construction, in the Monte Carlo study, we knew the truste@ssociated with the sim-
ulated dateb. Each estimation strategy was used to recover a prediceeipscost associated
with each bid. This allowed us to evaluate the error assediaith each of the predicted values;

i.e., the error for thé" cost is € — &). To compare the performance of the estimation strategies,
we computed the mean squared error of the prediction (MSERYuU

C=b-

Mo xy\2
MSEP= Z%
=)

whereM is the number of costs that survived the trimming descrideaiva for the particular
estimation strategy, in a given simulation.
In tablée 2, we present the MSEPs that obtained using the &stimstrategies with independently-
and identically-distributed (IID) data, where the Monterldadamples were held fixed across all
16



Frank

Figure 1: Types of Dependence in Archimedean Copulae

methods. As expected, the MSEPs for all estimation stregeggcrease as the sample size in-
creases, which can be seen by comparing the three rightaolostns of the table along a given
row. Our results indicate that the copula estimator peréatias well as the GPV estimator which
was designed for 11D data. The MSEPs associated with thela@mproaches, regardless of the
copula chosen, are comparable to the MSEPs obtained usigRN approach. We considered
the LPV approach using the raw bids as well as the logarithbidsf, which is what the authors
suggested researchers consider when the distributiordsfibiskewed. We found that the LPV
approach had fliculty with IID data whenT was small (for example, 50) because the kernel
density took values close to zero and resulted in exceadrigh pseudo-costs. However, even
for the largest sample size, which involved 200 auctiors MISEP obtained using the LPV ap-
proach was forty times that of GPV or our copula approachfoReance of the LPV approach
improved substantially when the logarithmic transformativas used and the pseudo costs were
recovered using an appropriate modification of equation (9)

6.2. Performance usingffliated Data

In our simulation study, with fiiliated data, we considered data generated undgereit
“levels” of dependence as well adigirent “types” of dependence. We generated dependent data
from the Clayton, Frank, and Gumbel copulae to evaluate énfopnance of our method using
data that exhibited ffierent types of dependence. For example, in figure 1, we depirtiate
draws generated from Clayton, Frank, and Gumbel copulagfigtires illustrate the type of de-
pendence inherent in the data varies depending on the coqaedg In the scatterplots, and in our
simulation study, we fixed the level of dependence accorttirfendall’'st—a non-parametric
measure of association which is defined in terms of concaglafs was demonstrated by Gen-
est and MacKay| [12], a direct relationship exists betweend&i’s r and the parameter of an
Archimedean copula. In talle 3, we list the correspondert@den Kendall’'s and the parame-
ter of each Archimedean copula we considered, here defiotdd exploited these relationships
to provide structure in our simulation study: they allowesita fix the level of dependence
across generating copulae by computing the copula paresregsociated with given choices of
Kendall'st. For example, in figure 1, the parameters of the Clayton,k@amd Gumbel copulae
were chosen to correspond with a value for Kendalls 0.75.

The discussion above centered around bivariate copulai&e imhour simulation study we
considered auctions with three bidders. However, theiosiship between Kendall's and

3The type of dependence is easier to see using bivariate dvehich can be plotted in two dimensions. Of course,
the relationships apply to multivariate draws, as will becatear in the discussion that follows.
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Table 3: Kendall'sr and Archimedean Copula Parameters

Copula | Relationship
Clayton | 7= ;%

Gumbel | r=1-1

Frank | 7=1-2[Dy(6) - 1]

. 100
D10) = 5 fo WE‘ﬂqu

Archimedean copulae derived by Genest and MacKay [12] caappéed to the multivariate
copulae we considered. Because we are concerned with theelyim dfiliated private-cost
paradigm (APCP), the marginal distribution functions offeaandom variable are identically
distributed. Note, too, that a copula is considezrchangeabld the marginal distribution func-
tions are the same and the arguments are treated equiydgritie copula; i.e., in the bivariate
case,

C(uz, U2) = C(uz, up)

givenU; andU, are identically distributed. Thus, exchangeability is arf@f symmetry. Jouini
and Clemen | [16] have demonstrated that, in the bivariate, ¢éendall’sz is suficient to con-
struct ann-dimensional, exchangeable copula. This implies the wniglationships presented
in table 3 can be used to relate Kendali'so the parameter of the multivariate Archimedean
copulae of interest, all of which are exchangeable.

To simulate data from the Clayton, Frank, or Gumbel copulitle dependence, we followed
the approach described by Cherubini, Luciano, and Veazhjd}. Theirs involvesconditional
samplingwhere, initially,w;, aU(0, 1) random draw, is taken and thanis set equal to it. The
next (dependent) draws, is found by solving

Wz = Ca(Uz|uy),
and so on, so that, is found by solving
Wh = Cn(Un|Ug, . .., Un-1)

where all thew;s are independerntd (0, 1) draws. Because the inverse function does not have a
closed-form for some copulae, the procedure is computatiomtensive because the root of
each copula, conditional on the previous draws, must beedatumerically.

After converting the dependent draws into costs from thedated Pareto distributidfg(-),
the simulated costs; were then mapped into simulated bidsusing the following first-order
condition for profit maximization:

(n—1)fo(Ci)S12[1 - Fo(Gi), 1 — Fo(ci), 1 — Fo(c)]
S1[1-Fo(C). 1 - Fo(ci), 1 - Fo(c)]

A() = Ip@) -

whereg(-) is the equilibrium bid function. This first-order conditias a standard ordinary dif-
ferential equation which, subject to the boundary conditio

B@) =<,
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yields the symmetric equilibrium bid function undefikation

(T (= D foW)S12[1 — Fo(w), 1 - Fo(w), 1 - Fo(w)]
b =ple) =+ j; eXp( . S1IL= FoW). 1— Fo(W). 1— Fo(W)]

The results from the discussion above allowed us to condidbiate Carlo study using
dependent data in which we varied the number of auctions;dpala used to generate the de-
pendent data, and the amount of dependence inherent in tiezagiag copula. Kendall's
provided a convenient way of assigning the same level of miggece to simulations generated
under diferent copulae. Again, we compared the performance of the &fMhe LPV estima-
tion strategies as well as our copula approach in which thgtGh, Frank, and Gumbel copulae
were chosen for estimation, regardless of the generatipglao This exercise also provides
insight into the question of which copula should be choseanipirical applications and helps
to determine the importance of copula choice in these auctiodels; cf. Fermanian_[9] for
goodness-of-fit tests for copulae.

In the next three tables, we present the MSEPs obtained aaitiyof the estimation strate-
gies with dependent data generated from a specific Archiaredepula. In particular, in table
[4, we present results when data were generated from thedBlagpula. Likewise, in tables
5 and 6, we present the MSEPs when data were generated frofrahk and Gumbel copu-
lae, respectively. In each table, the first column indictedevel of dependence, as measured
by Kendall'st. We generated data from each copula using the copula-sppaifameter corre-
sponding to Kendall's equal to 025, 050, and 075. The second column in each table describes
the estimation strategy used, while the last three columesept the MSEPS for filerent sam-
ples sizesT equal to fifty, one hundred, and two hundred auctions eacimgpanequal to three
bidders.

Each of the tables reveals that the GPV estimation strategy iinappropriate one when
signals are fiiliated: as the dependence increases, the MSEPs increaasdition, for a given
level of dependence, increasing the sample size oftenededth higher MSEP under GPV. This
is clearly unfortunate, but perhaps not surprising: unde¥Gn the presence offidiation, the
measurement equation is mis-specified.

In contrast, the simulation results for the LPV non-paraioeistimation strategy, which was
designed to account foiffdiation, show promise. Regardless of the copula used torgenthe
data or the level of dependence in the data, the performdrtbe PV method improved as the
sample size increased. Furthermore, the MSEPSs obtained tis LPV method on dependent
data were substantially lower than those found for that nwtlihen independent signals were
used.

Interestingly, this does not hold for the LPV approach whéwgarithmic transformation of
the bids was used. While the transformation was attractivéenftependent data, the use of the
raw bids in the LPV approach often outperformed the logdfammed bids, at least in terms of
MSEP, for dependent data. In fact, the MSEP for the LPV appraghen no transformation
was used is always lower than that of the logarithmic trammsé&tion forr equal 075, regardless
of the copula used to generate the data. The logarithmisfwamation was introduced so that
fewer data would be trimmed for skewed bid distributions.thMighly-dependent data, this
rationale may no longer hold as one high (low) bid means diftsr are more likely to be high
(low). Consequently, the logarithmic transformation maguit in an increase in the number of
bids that are trimmed, which is what happened in the MontéoGandy.

Perhaps not surprisingly, for any given simulation, thedetMMSEPs of all the estimation
strategies obtained for our copula approach when it wastosestimate the model that generated
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Table 4: Performance of Methods using Data Generated frogt@iaCopula, MSEP

Dependence Method T=50 | T=100| T =200
GPV 0.00289 | 0.00189 | 0.00143

LPV 0.01079 | 0.00558 | 0.00341

T=0.25 LPV (log transform)| 0.00675| 0.00352 | 0.00204
Clayton 0.00185| 0.00104 | 0.00059

Frank 0.00195| 0.00113| 0.00070

Gumbel 0.00215| 0.00154 | 0.00114

GPV 0.00386 | 0.00374 | 0.00487

LPV 0.00682 | 0.00372| 0.00228

=050 LPV (log transform)| 0.00705| 0.00487 | 0.00357
Clayton 0.00187 | 0.00104 | 0.00057

Frank 0.00229 | 0.00172| 0.00136

Gumbel 0.00333 | 0.00246 | 0.00199

GPV 0.01033| 0.01271| 0.01613

LPV 0.01364 | 0.01222 | 0.00980

=075 LPV (log transform)| 0.02240| 0.02343 | 0.01953
Clayton 0.00267 | 0.00131| 0.00064

Frank 0.00481 | 0.00433| 0.00382

Gumbel 0.00641| 0.00583| 0.00545

the data. Note, too, that our copula approach always peeonvell when either the Frank or
the Gumbel copulae were used in estimation, regardlesseafdpula that generated the data.
The type of dependence inherent in the Clayton copula i cpiecific, as illustrated in figure
[1. Because of this, the simulation results show that whercopula approach used the Clayton
copula in the estimation, but the data were not generateddr€layton copula, the MSEPs were
closer to those obtained using the LPV method.

7. An Empirical Application

To illustrate the feasibility of our estimation strategye Wave chosen to implement it using
data from low-price, sealed-bid, procurement auctiond bgithe Department of Transportation
in the State of Michigan. At these auctions, qualified firmesiavited to bid on jobs that involve
resurfacing roads in Michigan. We have chosen this type dfi@u because the task at hand is
quite well-understood. In addition, there are reasons lieveethat firm-specific characteristics
make the private-cost paradigm a reasonable assumptipnrenagerial ability at specific firms
can difer considerably. On the other hand, other factors suggatstté cost signals of individual
bidders could be dependent, evdiiliated; e.g., these firms hire labour services in the same
market and face similar costs for inputs, such as energy #sawgaving inputs. Thus, the
APCP seems reasonable. We have eschewed investigatieg igdating to asymmetries across
bidders (i.e., introducin;s that vary across bidders) because we simply havéfiogunt data to
identify such models. Instead, we focus on the symmetric RBGtlined above and developed
further in the first section of the appendix to this paper. Asreserve price exists at these
auctions, we treat the number of participants as if it weeertamber of potential bidders and
focus on auctions at which three bidders participated. brtskve are ignoring the potential
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Table 5: Performance of Methods using Data Generated fronkFeapula, MSEP

Dependence Method T=50 | T=100| T =200
GPV 0.00468 | 0.00323 | 0.00238

LPV 0.01064 | 0.00553 | 0.00329

T=0.25 LPV (log transform)| 0.00808 | 0.00419 | 0.00249
Clayton 0.00290 | 0.00187 | 0.00135

Frank 0.00217 | 0.00115| 0.00064

Gumbel 0.00236 | 0.00153 | 0.00106

GPV 0.00413 | 0.00353| 0.00380

LPV 0.00972 | 0.00672 | 0.00457

=050 LPV (log transform)| 0.01064 | 0.00920 | 0.00681
Clayton 0.00484 | 0.00451| 0.00476

Frank 0.00178 | 0.00096 | 0.00055

Gumbel 0.00292 | 0.00199 | 0.00151

GPV 0.01658 | 0.01826 | 0.02052

LPV 0.02348 | 0.02192| 0.01780

=075 LPV (log transform)| 0.03078 | 0.03175 | 0.02665
Clayton 0.02398 | 0.02430 | 0.02428

Frank 0.00160 | 0.00089 | 0.00048

Gumbel 0.00333| 0.00293| 0.00298

importance of participation costs which others, includind21], have investigated elsewhere.

In table 7, we present the summary descriptive statistins@ming our sample of 834 obser-
vations from 278 auctions. Our bid variable is the price p#ée.mNotice that both the winning
bids as well as all tendered bids vary considerably, frormedb$41,760.32 per mile to an high
of $5,693,872.81 per mile. What explains this variation?I\eeesumbably heterogeneity in the
tasks that need to be performed. One way to control for thisrbgeneity would be to retrieve
each and every contract and then to construct covariatestfrose contracts. Unfortunately, the
State of Michigan cannot provide us with this informationleast not any time soon.

How can we deal with this heterogeneity? Well, in our casehaxe an engineer’s estimate
x of the cost per mile of performing the project. Thus, we ctindion this exogenous covari-
ate when estimating‘ag(blx) and gg(blx). In table’ 8, we present the PML estimates as well as
standard errors of the copula parameters. We used the faotstcalculate the standard errors:
specifically, we drew 278 triplets of bids along with the evagir's estimate for that auction at
random, with replacement, from the sample distributiorotof bootstrap estimat@(ux) and
go(blx). We then estimated the dependence parangeftareach chosen copula, replicating this
for 1,000 bootstrap samples.

Of course, we cannot compare directly the parameter esigvatross copulae because the
values of the parameters are specific to a given copula ang itifferent levels of dependence.
Thus, alongside these parameter estimates, we presenvifesmonding estimated values of
Kendall'st, with standard errors, again obtained via the bootstrap.

The estimates, and their standard errors, indicate camdilde(and significantly) positive
dependence—faliation—within the Archimedean family of copulae. In figure ®e depict
fo(cx), a non-parametric estimate Q?(c|x) admitting dependence, evaluated at the sample me-
dian of x for each copula used in estimating the pseudo-costs. The &linates oifg(clx) are
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Table 6: Performance of Methods using Data Generated from @u@dpula, MSEP

Dependence Method T=50 | T=100| T =200
GPV 0.00452 | 0.00295 | 0.00219

LPV 0.01408 | 0.00747 | 0.00463

T=0.25 LPV (log transform)| 0.00967 | 0.00514 | 0.00323
Clayton 0.00354 | 0.00228 | 0.00180

Frank 0.00305| 0.00178| 0.00123

Gumbel 0.00216 | 0.00114 | 0.00065

GPV 0.00383 | 0.00323| 0.00331

LPV 0.01240| 0.00984 | 0.00688

=050 LPV (log transform)| 0.01110| 0.00915 | 0.00697
Clayton 0.00787 | 0.00694 | 0.00650

Frank 0.00352 | 0.00291 | 0.00227

Gumbel 0.00150 | 0.00084 | 0.00046

GPV 0.02047 | 0.02107 | 0.02173

LPV 0.03073 | 0.02827 | 0.02389

=075 LPV (log transform)| 0.03266 | 0.03167 | 0.02728
Clayton 0.02906 | 0.02760 | 0.02514

Frank 0.00542 | 0.00530| 0.00474

Gumbel 0.00090 | 0.00047 | 0.00024

Table 7: Sample Descriptive Statistics—DoljMge, n=3,T = 278

Variable Mean St. Dev. Median Minimum Maximum

Engineer’s Estimate 475,544.54| 491,006.52| 307,331.26| 54,574.41| 3,694,272.59
Winning Bid 466,468.63| 507,025.81| 286,102.57| 41,760.32| 3,882,524.81
All Tendered Bids | 507,332.42| 564,842.58| 317,814.77| 41,760.32| 5,693,872.81

all very close, regardless of the copula used in estimation.

In figurel 3, we present the bid function (pseudo-costs) ptediby our approach. Notice
how our estimates are very close to thé-fiBe. In figure 4, we plot our pseudo-cost estimates
versus those estimated using the methods of GPV. One of thelpscosts estimated by the
method of GPV is negative, while no costs are estimated teebative using our approach. The
main point, however, is that our PML estimated pseudo-crgsystematically above the GPV
estimates. In the presence dfilgation, an higher cost is implied for a given bid than under
independence because players (typically) bid closer o thsts. The average absolute relative
difference between the GPV estimates and the PML estimatesetiasing the Clayton, Frank,
and Gumbel copulae are 23 percent, 205 percent, and 124 percent, respectively.

Why is dliliation potentially interesting to an economist? In figurea® illustrate that, in
the presence offhliation, low-cost bidders (those who are likely to win thecion) behave
more competitively than would be the case under indepemdefitie figure was constructed
using the analytic bid function for the Frank copula witharaeters corresponding to the values
for Kendall'st denoted in the figure. Here} equals the value estimated using a Frank copula
in the application given in table 8. In fact, even with justeth bidders, the winners (typically
those with low costs) bid very close to their costsfilfation disciplines bidders: when a bidder
contemplates his having the lowest cost, and thus winniagticttion, he must also recognize
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Table 8: Copula Parameter and KendatlBstimates
Copula Parameter| Kendall'st
Copula | Estimate  St. Err| Estimate St. Err,
Clayton 38028 03177 | 06553 00211
Frank 112898 06645| 0.6973 00167
Gumbel| 3.0187 01319 | 0.6687 00176

that, under filiation, his opponents will probably have costs close to &gl this forces him to
bid more aggressively than he would under independence.

8. Summary and Conclusions

Within the dfiliated private-values paradigm, we have developed a tsectanpirical model
of equilibrium behaviour at first-price, sealed-bid auetioWhile the model is non-parametrically
identified, the rate of convergence is slow when the numbbidafers is even moderately large.
Also, the dfiliation suficient for the measurement equation in an empirical spetidicéo con-
stitute an equilibrium is diicult to preserve in the course of non-parametric estimatidius,
we have developed a semiparametric estimation strategghwhspects féliation as well as
avoids the curse of dimensionality that relates to the nunolbdidders, focusing our atten-
tion on the Archimedean family of copulae and implementimg framework using particular
members—the Clayton, Frank, and Gumbel copulae. We havéedpplir framework to data
from low-price, sealed-bid auctions used by the Michigap&anent of Transportation to pro-
cure road-resurfacing services, rejecting the hypottafsisdependence and finding significant
(and high) #iliation in cost signals. Ignoring this potentidtiiation has important implications
concerning estimates of the procurement-cost distribytichich can be important to a policy-
maker seeking to design the optimal procurement mechanism.
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Appendix

In this appendix, we present calculations too cumbersoménditusion in the text of the
paper as well as describe the creation of the data set used.

Low-Price, Sealed-Bid, Procurement-Auction Model

In this section of the appendix, we present the calculatimtessary to implement the low-
price, sealed-bid, procurement-auction model investijit section 6 and implemented in sec-
tion 7.

We first extend the result of Nelsen [26] concerning the capepresentation of the bivariate
survival copula to the case afof three or greater, and then use this result, in conjunatiim
the GPV transformation, to isolate the pseudo-costs in arstmic dfiliated private-cost model
of a procurement auction.

Lemma 2:
n
PF(C]_ >Cp,...,Ch2> Cn) =1- Z Pr(Ci < Ci)+
i=1
Z PrC <c,Cj<c)—...+
I<i<j<n
(-1)"PrCy <cy,...,Ch < Cp).

Proof.

The proof is by induction. We begin by demonstrating the ltdeuthe case oh equal two, and
then demonstrate it far greater than two. Note that, whens two, we have

Pr(C1 >C,Co > Cz) = Pr(C1 > C]_) - Pr(Cl >C,Co < C2)
=1- PI’(C]_ < Cl) - [Pr(C1 >C,Cr < C2) - PI’(C]_ <€,Cr< Cg)]
=1-Pr(Cy<c)—Pr(Cy <)+ PrCy <c1,Cy < ).

Now, suppose the result holds for the caserof (L) wheren is three or greater, then

Pr(Cl >Cy,...,Ch2> Cn) = PF(C]_ >C,...,Ch1 > Cn_]_)—

Pr(Cl >Cp,...,Ch12>0C1,Ch < Cn)
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=1- ) PrCi<c)+

n-1
1

Pr(Ci < Ci,Cj < Cj) - ...+
n-1
(-1)"PrCy <cy,...,Cn1 < Cno1)-
PrCi>cy,...,Ch1 = Cno1|Ch < €n) Pr(Cr < ¢p)
n-1

=1- ) PrCi<c)+
i=1

[N
IA,
IA
IA

Z PI’(Ci<Ci,Cj<Cj)—...+
I<i<j<n-1
(_1)”‘1 Pr(Cl < Cl’ s Cn—l < Cnfl)_
n-1
[1- ) PrCi < GiCq < co)+
i=1
> PICi<a.Ci<glCh<c)—...+
I<i<j<n-1
(_1)n—1 PrCy <cy,...,Ch1 < Cr1lCh < )]
PrC, < ¢n)]

n
=1- ) PIC <c)+
i=1

Z Pr(Ci<ci,C,-<cj)—...+

I<i<j<n-1

(-1)"PrCy <ca,...,Ch < Cp)

Note that this lemma gives a copula representation of thevalicopula, which is useful in
the characterization of the first-order condition of theibligrium bid at a procurement auction.
The lemma is a generalization of the caseri@f two given by Nelsen [26] on page 28. We
introduce the notatio® to denote the survival copula and define a survival copula as

S[1-F1(C1),.... 1= Fa(G)] =1- ) PrCi < c)+
i=1

PrCi <c,Cj<cj)—...+

l<i<j<n-1
(-1)"PrCy <c,...,Ch<cp)
whereF;(-) denotes the cumulative distribution function of variaBle

Lemma 3:
PI’(CZ >Cp...,Ch2> Cn|C]_) = Sl[l - Fo(Cl), o 1- Fo(Cn)]

whereS; denotes the partial derivative Sfwith respect to the first component.
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Proof.

Let fc(cy, ..., cn) denote the probability density function correspondingégc,, . . ., c,). Now,

PrC.>cy,...,Ch2>0C) = S1[1 — Fo(cy), ..., 1— Fo(cn)]

:f...ffc(ul,...,un)dU]_,...du
C1 Cn

Differentiating both sides of the last equality with respect tgields

—81[1 - Fo(Cl), ceey 1- Fo(Cn)] fo(Cl) = - f cee f fc(Cl, U, ..., Un) dUz, e dUn.
C2 Cn

Thus, we have

j(;z...j(;n fC(Cl,UZ,...,Un)duz,...dUn

fo(ca)
But the left-hand side of equation (10) is just®s(> cy,..., Ch > cplcy). The desired result
then follows.

Within the APCP, for any bidder (focus, say, on bidder 1), weusmne that he maximizes
expected profit

&lx(br, c1)] = (b1 — €2)S1 (1 - Fo(Cr), 1 - Fo[B(ba)], ..., 1 - Fo[8™(ba)])

by choice of bidb; wherec; is bidder 1's private cost and whesg) is a strictly monotonically
increasing function. The first-order condition for expeeprofit maximization implies

= Sl[l - Fo(Cl), 1= Fo(Cn)]. (10)

68[71’([31, Cl)]

b, =0

= S1(1- Fo(1), L - Fol ™ (bu)], .., 1 = Fo[8™(bu)]) -
(b - o) Z fog o0 L) l(bl)

x S1j (1= Fo(C1), 1 - FolB~ 1(b1)], - 1= Fo[p ™ (by)])
which can be re-written as
S1(1 - Fo(cr). 1 - FolB(by)]. ... 1 - Fo[8~*(by)])
= (- i - Dyl o) P
X S12(1 = Fo(C), 1 - Fo[5~ 1(b1)], - 1= FolB(by)])
because

Saj (1 — Fo(cy). 1 - Fo[8(b)]..... 1~ FO[ﬂil(bl)]) -

S (1= Fo(cr), 1= Fo[B(bu)], .. 1= Fo[8H(b)]) ¥ # k.
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Given this last equality, we can uSg,(-) without loss of generality. Applying the GPV approach,
we note that

Go(b1) = Fo(cy)
and
fo(c1)
pc)’

Qo(b1) =

SO we can re-arrange terms to get

S1[1 — Go(b1), 1 - Go(ba), ..., 1 - Go(by)]
(n—1)go(b1)S12[1 — Go(b1), 1 - Go(ba), ..., 1 — Go(by)]’

which expresses bidder 1's cost solely as a function of tie bi

C]_:b]_—

Data

The data for the empirical part of this paper, which conceotprement contracts for road
resurfacing, were provided in raw form by the Department @n$portation of the State of
Michigan. To create the final data set, we first extractedrechtength and determined the num-
ber of bidders at each auction. Next, we looked for obseaathaving missing data, scanning
each file to ensure that all contract lengths were propethaeted. Finally, we checked to ensure
that all data were in the same units; e.g., we convertedactstthat were measured in kilometres
into miles. At this point, we had,200 observations concerningQ41 contracts. Subsequently,
we focused on auctions havimgpf three; this constrained us to 278 auctions.
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